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Abstract. The ubiquity of data streams has been encouraging the de-
velopment of new incremental and adaptive learning algorithms. Data
stream learners must be fast, memory-bounded, but mainly, tailored to
adapt to possible changes in the data distribution, a phenomenon named
concept drift. Recently, several works have shown the impact of a so far
nearly neglected type of drift: feature drifts. Feature drifts occur when-
ever a subset of features becomes, or ceases to be, relevant to the learn-
ing task. In this paper we (i) provide insights into how the relevance of
features can be tracked as a stream progresses according to information
theoretical Symmetrical Uncertainty; and (ii) how it can be used to boost
two learning schemes: Naive Bayesian and k-Nearest Neighbor. Further-
more, we investigate the usage of these two new dynamically weighted
learners as prediction models in the leaves of the Hoeffding Adaptive Tree
classifier. Results show improvements in accuracy (an average of 10.69%
for k-Nearest Neighbor, 6.23% for Naive Bayes and 4.42% for Hoeffding
Adaptive Trees) in both synthetic and real-world datasets at the expense
of a bounded increase in both memory consumption and processing time.

1 Introduction

Data streams are ubiquitous, potentially unbounded and generated at a very
fast pace. Examples of streaming data include, but are not limited, to: ATM
transactions, readings in mobile sensor networks, social networks posts and stock
trades. Motivated by these real world problems, data stream mining grew in
popularity and became a very active research field with new techniques proposed
every year aiming at learning from these sequences of data in an incremental, fast
and memory-bounded fashion. Many of these new developments in data stream
learning focus on the ephemeral characteristics of data streams, i.e. when the



underlying data distribution shifts with time, a phenomenon named concept drift
[27].

More recently, studies [6, 7] shed light onto a specific kind of drift which has
so far practically been neglected, the so-called feature drifts, sometimes referred
to as contextual concept drifts in seminal works [27]. In practice, a feature drift
occurs whenever a subset of features of a data stream becomes, or ceases to
be, relevant to the learning task. As surveyed in [7] and empirically analyzed in
[6], feature drifts pose challenges that are yet to be tackled by the data stream
mining community.

In this paper we propose a low complexity and memory-bounded solution to
track the relevance of features in streaming data accordingly to the information
theoretical Symmetrical Uncertainty. Additionally, we show how this metric can
be used to enhance prediction accuracy in k-Nearest Neighbor, Naive Bayes and
Hoeffding Adaptive Tree classifiers when they are applied feature drifting data
streams.

2 Learning from Data Streams

As times goes by, data acquisition and storage becomes cheaper and easier.
As a consequence, companies and individuals can generate and store data at
an increasing rate. Some of these data are generated sequentially and are so
massive that it would not be practical nor useful to store them all. For instance,
the data generated by a wearable gadget may only be meaningful for a small
period of time, such that the burden to store or transmit it may be unjustifiable.
These abundant sources of raw data may also be unintelligible to its possessors
and in these situations, data mining techniques are often employed to extract
meaningful patterns from apparent chaos. Currently, a lot of effort has been
directed towards mining data that is generated in a continuous stream, an area
that has been commonly known as data stream mining [10, 2].

Generally, data stream mining combines almost all problems of conventional
batch learning (e.g. missing values, noisy data, outliers) with problems such as
instability of the underlying concept and restrictive resources constraints. Specif-
ically, data stream learners must (i) be able to process instances sequentially
according to their arrival, (ii) act within limited memory space and process-
ing time, (iii) deal with data instability (concept drifts); and (iv) be able to
generalize well as instances’ labels become available [17].

Ideally, algorithms for learning from data streams must include techniques
for dealing with all aforementioned problems. However, not all of them must be
addressed at once since it depends on the problem being tackled. For instance,
a given problem setting may exhibit concept drifts but not suffer from a lack of
labeled data or vice-versa.

2.1 Data Stream Classification

The most common (and widely explored) learning task in a data stream setting
is undoubtedly classification. Formally, given a set of possible class labels Y =



{y1, . . . , yc} and a set of labeled training instances X = {(x1, y1), . . . , (xn, yn)},
a classifier uses the training set to build a model f : x→ Y capable of predicting
the class label of an unlabeled instance xi. Precisely, each instance x is a d-
dimensional feature vector belonging to a feature set D =

⋃d
i=1 {Di}, that is

possibly categorical, ordinal, numeric or most likely mixed.
Data stream (or online) classification is a variant of the traditional batch clas-

sification, and both are concerned with the problem of predicting class labels for
unlabeled instances. The main difference between the batch and the online set-
ting remains on how data are presented to the classifier. In a batch configuration
data are entirely accessible in a finite and static dataset, while streaming data
are presented sequentially over time [18] while f must be updated accordingly.

2.2 Concept Drift

Due to the inherent temporal aspect of data streams, their underlying data
distribution may change over time, directly influencing changes to the concept
to be learned, a phenomenon often referred as concept drift.

Let Eq. 1 denote a concept C, a set of prior probabilities of the classes and
class-conditional probability density function [22].

C =
⋃
yi∈Y

{(P [yi], P [x|yi])} (1)

Given a stream S, retrieved instances it will be generated by a concept Ct.
If during every instant ti of S we have Cti = Cti−1

, then the concept is stable.
Otherwise, if between any two timestamps ti and tj = ti +∆ (with ∆ ≥ 1) it is
the case that Cti 6= Ctj , then we have observed a concept drift [17].

3 Problem Statement

Most existing algorithms for data streams tackle the infinite length and drifting
concept characteristics. However, not much attention has been given to a specific
kind of drift: feature drifts. Conversely to conventional concept drifts, where
changes in the data distribution are claimed to occur inside the skewing of classes
in ranges of features’ values, feature drifts occur whenever a subset of features
becomes, or ceases to be, relevant to the concept to be learned.

Until this point, the term “relevance” was used without a proper definition. In
this paper we divide features in two types: relevant and irrelevant [7]. Assuming
Si = D \ {Di}, a feature Di is deemed relevant iff Eq. 2 holds.

∃S′i ⊂ Si, such that P [Y |Di, S
′
i] 6= P [Y |S′i] (2)

Otherwise, the feature Di is said irrelevant. In practice, if a feature that is
statistically relevant is removed from a feature set, it will reduce overall predic-
tion power since (i) it is strongly correlated with the class; or (ii) it belongs to
a subset of features that is strongly correlated with the class [29].



Changes in the relevant subset of features enforce the learning algorithm to
adapt its model to ignore the irrelevant attributes and to account for the newly
relevant ones [22]. Given a feature space D at a timestamp t, we are able to
select the ground-truth relevant subset D∗t ⊆ D such that ∀Di ∈ D∗t Eq. 2 holds
and ∀Dj ∈ D \D∗t the same definition does not. A feature drift occurs if, at any
two time instants ti and tj , D∗ti 6= D

∗
tj holds.

Let r(Di, tj) ∈ {0, 1} denote a function which determines whether Eq. 2
holds for a feature Di in a timestamp tj of the stream. A positive relevance
(r(Di, ti) = 1) states that Di ∈ D∗ in a timestamp ti. A feature drift occurs
whenever the relevance of an attribute Di changes in a timespan between tj and
tk, as stated in Eq. 3.

∃tj∃tk, tj < tk, r(Di, tj) 6= r(Di, tk) (3)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be
learned by the learning algorithm. Therefore, feature drifts can be posed as a
specific type of concept drift that may occur with or without changes in the data
distribution P [x] [6, 7]. We emphasize that feature drifts are indeed targeted by
the generic concept drift formalization, however, most existing works on con-
cept drift detection and adaptation assume that the relevant subset of features
remains the same and that drifts occur if certain values, or ranges of values, of
attributes have their class distribution re-skewed.

As pointed out in [6] and [7], feature drifts are likely to occur in a variety
of scenarios, but mainly in text stream scenarios, e.g. social media, SMS chats,
online social networks (Facebook, Twitter) and e-mail spam detection systems.

As in conventional concept drifts, changes in r(·, ·) may occur during the
stream. This enforces learning algorithms to detect changes in D∗, discerning
between features that became irrelevant and the ones that are now relevant
and vice-versa. In order to overcome feature drifts, a learner must either (i)
discard and derive an entirely new classification model that is consistent with
the relevant features; or (ii) adapt its current model to relevance drifts [22].

4 Dynamic Feature Weighting

Feature weighting is broadly used in batch learning [11, 1] to assign different
weights to features according to their relevance to the concept to be learned and
to improve prediction accuracy. As shown earlier, in opposition to static sce-
narios, the relevance of features may increase or decrease during a data stream,
thus, techniques for tracking and quantifying the proportions of such changes
are needed.

The main hypothesis behind our proposals is that features can be dynamically
weighted in order to augment the importance of relevant features and diminish
the importance of those which are deemed irrelevant according to observed fea-
ture drifts. In this section we show how Symmetrical Uncertainty can be swiftly
computed along a sliding window based on Entropy computation. Later, we in-
troduce how Symmetrical Uncertainty can be applied into two distinct learning



schemes to boost prediction accuracy on feature drifting data streams. Finally,
we detail the bounded computational overhead this proposal provides in pro-
cessing time and memory usage.

4.1 Preliminaries

The relevance of a feature can be computed in diverse ways. In this section we
discuss evaluation techniques for measuring the goodness of features for classi-
fication. Generally, a feature is good if it is relevant to predict the class. If one
adopts correlation to measure the goodness of a feature, a feature will be deemed
as relevant if its value surpasses a given threshold.

Several approaches exist to measure the correlation between two random
variables. One such approach use linear correlation and another one is based on
measures from information theory.

The most common formula for computing the correlation for a pair of vari-
ables (X,Y ) is the linear correlation coefficient, which can be computed as fol-
lows:

c(X,Y ) =

∑
q∈Di

∑
yi∈Y (q − D̄i)(yi − Ȳ )√∑

q∈Di
(q − D̄i)2

√∑
yi∈Y (yi − Ȳ )2

(4)

The linear correlation coefficient is bounded in the [−1; 1] interval. If X and
Y are completely correlated, c takes the value of 1 or -1; and if these variables are
completely uncorrelated, c is 0. Adopting linear correlation as a feature goodness
measure has the benefit of eliminating completely uncorrelated features. Also, if
data are linearly separable in its original representation then they will also be
separable if all but one a group of linearly dependent features are removed [28].
Nevertheless, assuming linear correlations is not safe for a variety of domains.
Linear correlation is likely to be unable to depict correlations which are non-
linear in nature.

In our proposal, we adopt information theory approaches to compute the
goodness of a feature. The first one is a measure of uncertainty of a random
variable, named Entropy. The Entropy of a variable X is given by:

H(X) = −
X∑
xi

P [X = xi] log2 P [X = xi] (5)

On the other hand, the Entropy of a variable X after observing values of a
variable Y (Conditional Entropy) is given by:

H(X|Y ) = −
Y∑
yj

P [Y = yj ]

X∑
xi

P [X = xi|Y = yj ] (6)

Clearly, one of the drawbacks of picking Entropy as a goodness measure is
that is it unable to work with numeric features, unless they are discretized. Since
minimum (min) and maximum (max) values of features in streaming scenarios



Algorithm 1: Sliding window entropy. Adapted from [25].
input : window size w, a data stream S.
output : be ready to provide the entropy h at any time.

1 Let W ← ∅ be the sliding window;
2 Let h← 0 be the entropy;
3 Let n← 0 be the number of instances in W ;
4 Let ni ← 0 be the number of instances with the yi-th label;
5 foreach (xi, yi) ∈ S do
6 if |W | = w then
7 Dequeue oldest element from W from the yj-th class;
8 h← DEC(h, n, nj);

9 W ←W ∪ {(xi, yi)};
10 h← INC(h, n, ni);

11 Function INC(h, n, ni)
12 Update n← n+ 1;
13 Update ni ← ni + 1;
14 return n−1

n

(
h− log2

n−1
n

)
− ni

n
log2

ni
n

+ ni−1
n

log2
ni−1

n

15 Function DEC(h, n, ni)
16 Update n← n− 1;
17 Update ni ← ni − 1;

18 return n+1
n

(
h+ ni+1

n+1
log2

ni+1
n+1

− ni
n+1

log2
ni

n+1

)
+ log2

n
n+1

are unknown a priori, we adaptively discretized features using a sliding-window
version of the Partition Incremental Discretization algorithm [16] with 10 bins.

One of the advantages of Entropy is that it can be computed along sliding
windows. In Algorithm 1 we present the pseudocode for Entropy computation
over sliding windows. Proofs for Entropy equations (lines 14 and 18) were omitted
from this paper for the sake of brevity, thus, the reader is referred to [25] for
details.

Entropy is the base for computing more robust metrics. One example is
Information Gain, which is the amount by which the Entropy of a variable X
decreases reflecting additional information about X provided by Y , and is given
by:

IG(X|Y ) = H(X)−H(X|Y ) (7)

An important trait of Information Gain is that it is symmetrical, i.e. IG(X|Y ) =
IG(Y |X). To prove it, one needs to verify that H(X) − H(X|Y ) = H(Y ) −
H(Y |X) and this can be derived from H(X,Y ) = H(X) + H(Y |X) = H(Y ) +
H(X|Y ).

As Entropy, Information Gain is biased towards features with more values.
Therefore, different metrics that compensate for this bias are preferred. In this
paper we picked Symmetrical Uncertainty (SU) as a goodness measure since it
atones this bias. Symmetrical Uncertainty can be computed as follows:



SU(X,Y ) = 2

[
IG(X|Y )

H(X) +H(Y )

]
= 2

[
H(Y )−H(Y |X)

H(X) +H(Y )

]
(8)

The range of possible values for SU is the [0; 1] interval, where 1 indicates
that the value of a variable completely predicts the other, while 0 indicates that
X and Y are completely independent.

In order to compute SU along a sliding window, one must keep track of
H(Di), H(Y ) and H(Y |Di) entropies. Both H(Di) and H(Y ) can be incre-
mented and decremented in O(1) accordingly to Alg. 1, while the Conditional
Entropy H(Y |Di) can be computed with separate H(Y |Di = q) entropies (see
Eq. 6), also given by Alg. 1. If we assume that q ∈ Di and |Di| = m, then SU
can be computed with low computational complexity in the O(m) order for a
single feature and O(dm) for all features in a d-dimensional data stream.

Memory-wise, the cost of tracking H(Y ) is O(|Y |), while the cost for H(Di)
is O(m), thus, the total complexity is O(md) for a d-dimensional stream. Finally,
H(Y |Di = q) incurs a cost of O(|Y |), therefore the total cost is O(md × |Y |),
when considering all features Di ∈ D.

4.2 Applying Feature Weighting to k-Nearest Neighbor Learning

k-Nearest Neighbor (kNN ) [5] is one of the most fundamental, simple and widely
used classification methods, which is able to learn complex (non-linear) functions
[5]. kNN is a lazy learner since it does not require building a model before
actual use. It classifies unlabeled instances according to the k “closest” buffered
instances. The definition of “close” means that a distance measure is used to
determine how similar/dissimilar two instances are. There are several approaches
to compute distances between instances, nevertheless, the most common one
is the Euclidian distance, given by Eq. 9, where xi and xj are two arbitrary
instances, and the summation occurs over all features Dk ∈ D.

dE(xi,xj) =

√ ∑
Dk∈D

(xi[Dk]− xj [Dk])2 (9)

As discussed in a variety of works [3], Euclidian distances fail on represent-
ing in an effective fashion the distance between points (instances) in a high-
dimensional space, since both irrelevant and redundant features have the same
weight as relevant ones.

k-Nearest Neighbor with Feature Weighting (kNN-FW ) is an extension to the
original kNN algorithm that performs dynamic feature weighting to overcome
both irrelevant features and feature drifts. kNN-FW comprises the following
internal structures: an instance buffer queue and variables to track H(Di), H(Y )
and H(Y |Di = q). Finally, kNN-FW has two distinct steps: a training and a
classification phase.

During the training step, instances it are retrieved from a stream S and
enqueued in a buffer of size W . For every instance being enqueued or dequeued,



the values of H(Di), H(Y ) and H(Y |Di = q) are updated according to Alg. 1,
thus, enabling prompt SU computation.

During the classification step, unlabeled instances xt are classified according
to the k-nearest neighbors available in buffer. In opposition to the conventional
kNN algorithm, we modify the Euclidian distance to perform feature weighting
accordingly to the discriminative power provided by Symmetrical Uncertainty,
i.e. w(Di) = SU(Di, Y ).

d(xi,xj) =

√ ∑
Dk∈D

w(Dk)× (xi[Dk]− xj [Dk])
2 (10)

Due to the dynamic computation of Symmetrical Uncertainty, kNN-FW is ex-
pected to assign weights dynamically accordingly to their discriminative power.
In feature-drifting cases, features that become, or cease to be, relevant to the
learning task will be promptly detected by changes in their Symmetrical Uncer-
tainty values, generating appropriate changes for each feature’s weight.

4.3 Applying Feature Weighting to Naive Bayes

Naïve Bayes (NB) is a probabilistic classifier based on Bayes theorem that works
under the naïve independence assumption between features. These predictors
are easy to build, can easily be incremented, and have no complicated param-
eter estimation, making it useful for large datasets and data streams. Classi-
fication (labeling) of instances in this learning scheme is given by Equation
11, that is, the class is chosen accordingly to the label yi that maximizes the
P [yi]

∏d
j=1 P [x[Dj ] | yi] probability.

y = argmax
yi∈Y

P [yi]

d∏
j=1

P [x[Dj ] | yi] (11)

Although Naïve Bayes is commonly referred as an appropriate solution for
high dimensionality problems [11], it has been shown to be prone to feature
drifts [6]. Analogously to kNN-FW, we now propose the adoption of a dynamic
weighting factor during Naive Bayes prediction. Naïve bayes with feature weight
(NB-FW) also adopts Symmetrical Uncertainty as a weighting factor during
classification, thus, probabilities are also weighted accordingly with w(Di) =
SU(Di, Y ), thus, labeling is performed as follows:

y = argmax
yi∈Y

P [yi]

d∏
j=1

(w(Di) + ξ)× P [x[Dj ] | yi] (12)

where ξ is a small padding factor, set to 0.0001, used to avoid zero weights
which would nullify the probabilities of some class values.



5 Analysis

In order to assess our proposal’s performance, we built an experimentation envi-
ronment encompassing both synthetic and real-world data. This analysis centers
on prediction accuracy, processing time and memory usage.

5.1 Synthetic Data Stream Generators

Drifts are synthesized as the combination of two pure distributions. The proba-
bility that an instance is drawn from the prior or posterior concept inside a drift
window is given by a sigmoid function. This drift framework is the default pro-
vided in the MOA framework [9] and all drift windows in our experiments have a
length of 1,000 instances. All synthesized data streams contain 100,000 instances
and contain 9 feature drifts. In the following, we introduce three synthetic data
generators used to induce feature drifts on our experiments: AGRAWAL [4], As-
sets Negotiation (ASSETS) [14] and SEA-FD [6]. In the following experiments,
we guarantee that feature drifts occur by changing the relevant subset of features
between prior and posterior concepts.

AGRAWAL. The AGRAWAL generator [4] produces data streams with the
aim of determining whether a loan should or should not be given to a bank cus-
tomer. This generator is composed by the following features: salary, commission,
age, education level, car make, zip-code, house value, years house is owned and
loan value. There are 10 functions for mapping instances to 2 possible classes,
each of which relying on different subsets of these features.

Asset Negotiation (AN). This generator was originally presented in [14],
where the aim was to simulate drifting bilateral multi-agent system negotiation
of assets. Assets are described by the following features: color, price, payment,
amount and delivery delay. The task is to predict whether an opposing agent
would be interested, or not, in an asset, making this a binary classification prob-
lem. Feature drifts are synthesized with changes on the interest of an agent by
modifying the concept through time given five functions, each of which is relying
on a different subset of features.

SEA-FD. Described in [6], SEA-FD extends the SEA generator [26] and
synthesizes streams with d > 2 uniformly distributed features, where ∀Di ∈
D, Di ∈ [0; 10] and D∗ = {Dα, Dβ} is randomly chosen with the guarantee that
it differs from the relevant subset of features from the earlier concept. As in [26],
instances are labeled using y = 1 if Dα +Dβ ≤ θ and y = 0 otherwise; where θ
is a user-supplied threshold. In the following experiments we chose θ = 7 since
it is a widely used value in many papers of the area [8, 6].

5.2 Symmetrical Uncertainty Tracking in Synthetic Experiments

In order to exemplify how the dynamic weights are computed during experi-
ments, we devote this section to present and discuss the Symmetrical Uncer-
tainty tracking during synthetic experiments. Figure 1 presents the Symmetrical
Uncertainty of features during AGRAWAL, ASSETS and SEA-FD experiments,
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Fig. 1: Symmetrical Uncertainty of several features during synthetic experiments.

where each feature is represented by a curve with a different color. We highlight
the fact that different features show higher SU values along the streams, thus
confirming that our tracking strategy is able to depict feature drifts correctly.

5.3 Real-World Data

To complement the synthetic data, some real-world datasets were also used for
the evaluation of the new algorithms. The adoption of real-world data is benefi-
cial since they present differentiated behavior, e.g. the class distribution is often
imbalanced and data are often noisy. On the other hand, it is nearly impossible
to affirm whether drifts occur, making evaluation of drift detection unfeasible.
We refrain from providing a detailed description of each used dataset for brevity.
The used datasets are: Electricity (ELEC) [23], Kaggle’s Give me Some Credit1
(GMSC) and Spam Corpus (SPAM) [21].

5.4 Evaluated Algorithms

Besides kNN and Naive Bayes, we also report results for a Very Fast Decision
Tree (VFDT) and a Hoeffding Adaptive Tree (HAT) since both perform embed-
ded feature selection during training.

VFDT Very Fast Decision Tree (VFDT) is an incremental decision tree learner
for non-drifting data streams [13]. The tree is recursively built as instances arrive
and new split nodes are generated if the information gain of the two most dis-
criminative features differ at least by ε, given by the Hoeffding bound [19]. The
prediction at the leaves may occur following three different strategies: majority
class, Naive Bayes and Adaptive Naive Bayes. The Adaptive Naive Bayes moni-
tors the error rate of the majority class and Naive Bayes, always employing the
one that currently best fits data, as judged by their recent estimated accuracy.

1 Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in Feb.
25th, 2016.



HAT Hoeffding Adaptive Tree (HAT) algorithm is an extension to the VFDT
to deal with drifts [20]. HAT updates its tree model over a sliding window and
creates or updates decision nodes if the data distribution changes at an arbitrary
split node. HAT detects data distribution changes according to the ADWIN
change detector [8] provided in MOA [9]. Whenever ADWIN detects a change
in a split node, the entire subtree is replaced by a new split node with the
most discriminant feature if the Hoeffding bound is still met. As in VFDTs, the
decision at leaf nodes may occur according to the majority class, Naive Bayes
and Adaptive Naive Bayes methods.

5.5 Experimental Protocol

Accuracy is computed accordingly to the Prequential test-then-train procedure
[15]. Prequential was chosen due to its way of monitoring a model’s performance
over time. Processing time is measured in seconds, while memory usage is given
in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM dispended per hour of
processing (GB-Hour). We adopted a window size W = 1, 000 to keep track of
Symmetrical Uncertainty in all experiments with the exception of Spam Corpus,
where W = 100, due to the smaller number of instances in this dataset. An
analysis of the impact of the window size W is later discussed in Section 5.7.
All remaining parameters were set accordingly to the defaults provided in the
Massive Online Analysis (MOA) framework [9].

5.6 Discussion

Table 1 presents the prequential accuracy results obtained during experiments.
In all cases, the usage of our proposed feature weighting scheme was beneficial,
providing an average boost of 10.69% and 6.23% for kNN and NB, respectively.
To provide statistical significance to our claims, we performed Wilcoxon’s, Fried-
man’s and Nemenyi’s tests [12]. Pairwise comparisons conducted with Wilcoxon’s
procedure between the original kNN and NB to their dynamically feature weighted
versions with a 95% confidence level corroborated that there is statistical differ-
ence between their accuracy rates.

Finally, with the aid of Friedman’s and Nemenyi’s tests, we compared all al-
gorithms in Table 1. Results showed that, {HAT, kNN-FW, VFDT, NB-FW} �
{kNN, NB}, also with a 95% confidence level. These results highlight that the
weighting scheme is beneficial since it allows both kNN and NB to achieve com-
parable results with more sophisticated techniques that embed feature selection
during stream learning, i.e. VFDT and HAT.

Tables 2 and 3 present processing time and memory usage obtained during
the execution of experiments. With the exception of the ASSETS experiment, the
adopted weighting scheme provides an computation overhead in both aspects.
We claim, however, that this computational overhead is not damaging enough to
prevent the usage of our weighting scheme, even in high dimensional problems,
e.g. the SPAM experiment.



Table 1: Prequential accuracy (%).
Experiment kNN kNN-FW NB NB-FW VFDT HAT
AGRAWAL 57.74 65.64 59.18 62.68 69.98 81.13

ASSETS 85.02 87.87 70.51 77.11 91.57 93.15
SEA-FD 64.02 84.14 76.05 78.35 82.63 83.24

ELEC 54.31 84.08 57.62 73.39 79.23 83.46
GMSC 92.48 92.67 93.09 93.32 93.25 93.37
SPAM 80.56 83.87 66.26 75.22 79.32 84.48

Table 2: Processing time (s).
Experiment kNN kNN-FW NB NB-FW VFDT HAT
AGRAWAL 20.91 21.54 0.45 0.47 1.08 1.57

ASSETS 13.52 13.92 0.28 0.28 1.04 0.97
SEA-FD 104.68 107.82 2.04 2.08 4.85 6.15

ELEC 7.36 7.51 0.36 0.37 1.43 1.08
GMSC 32.35 33.64 1.30 1.31 7.90 15.43
SPAM 5911.54 6088.89 288.38 291.27 253.76 421.45

5.7 On the Impact of the Window Size W

Windowing is a common approach for both data management and dealing with
drifting data. Our proposal relies on a window size parameterW that determines
how much data should be considered to keep track of SU. Finding an optimal
value for W is a trade-off without solution, a problem commonly referred as
the stability-plasticity dilemma. While short windows reflect the current data
distribution and ensures fast adaptation to drifts (plasticity), shorter ones worsen
the performance of the system in stable areas. Conversely, larger windows give
better performance in stable periods (stability), however, these imply a slower
response to drifts.

In this section we evaluate the impact of the window size W in our proposal.
We evaluated the original kNN, kNN -FW and NB-FW with different W val-
ues across the [5; 2000] domain. Results for the Spam Corpus experiment were
omitted since there was not enough time to run kNN -based algorithms in such
high-dimensional scenarios in this amount of window sizes. In Figure 3 we report
the average accuracy obtained during experiments.

In Figs. 3a and 3b we present the results obtained by kNN and kNN -FW,
where it is clear that finding an optimal value that achieves the best results on
all datasets is not trivial. However, by comparing the results in both graphics,
we highlight that regardless of the chosenW value, the adoption of the proposed
weighting scheme is beneficial.

On the other hand, the results presented in Fig. 3c show that for NB-FW
results are robust across different window sizes, although the accuracy drops
very slightly for windows with W > 1, 000. Finally, we highlight the ELEC and



Table 3: RAM-Hours (GB-Hour).
Experiment kNN kNN-FW NB NB-FW VFDT HAT
AGRAWAL 7.57× 10−7 7.88× 10−7 1.15× 10−9 1.18× 10−9 5.05× 10−8 3.99× 10−8

ASSETS 3.77× 10−7 3.99× 10−7 4.34× 10−10 4.51× 10−10 7.84× 10−8 3.22× 10−8

SEA-FD 1.29× 10−5 1.34× 10−5 1.40× 10−8 1.45× 10−8 8.16× 10−7 2.65× 10−7

ELEC 2.43× 10−7 2.55× 10−7 6.14× 10−10 6.51× 10−10 3.45× 10−8 9.27× 10−9

GMSC 5.12× 10−1 5.43× 10−1 2.12× 10−3 2.19× 10−3 1.34× 10−3 4.21× 10−3

SPAM 1.20× 10−6 1.26× 10−6 2.38× 10−9 2.45× 10−9 3.88× 10−7 1.70× 10−6

Table 4: Prequential accuracy (%) for different leaf prediction strategies in HAT.
Experiment HAT HAT-kNN-FW HAT-NB-FW
AGRAWAL 81.13 88.45 91.03

ASSETS 93.15 95.63 93.37
SEA-FD 83.24 81.12 84.80

ELEC 83.46 83.24 83.56
GMSC 93.37 93.43 93.39
SPAM 84.48 92.62 85.25

GMSC experiments, where the differences between the maximum and minimum
accuracies were just 0.35% and 0.97%, respectively. This shows that the con-
cept is relatively stable during the whole experiment, thus, the weights obtained
across different window sizes are consistent.

5.8 Using Dynamically Weighted Classifiers as Leaves in Hoeffding
Adaptive Trees

Although our weighting scheme favored kNN and NB classifiers, the Hoeffding
Adaptive Tree (HAT) still outperforms both. In this section we investigate the
adoption of our weighting scheme at the leaves of the HAT classifier in replace-
ment of the adaptive Naive Bayes.

In Table 4 we compare the results for HAT with feature weightedKNN (HAT-
kNN-FW) and NB (HAT-NB-FW) leaves against the original HAT. Results show
that, with the exception of the SEA-FD experiment, the weighted approaches
provide accuracy gains, regardless if it is under kNN or NB learning schemes.
On average, results obtained showed a prediction rate gain of 4.42%.

6 Conclusion

In this paper we presented a time and memory-bounded solution for tracking
the relevance of features based on the information theoretic concepts of Entropy
and Symmetrical Uncertainty. We showed how these metrics can be successfully
used to enhance k-Nearest Neighbor, Naive Bayesian and Hoeffding Adaptive
Tree algorithms during both stable and feature drifting regions of data streams.
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Fig. 2: Prequential accuracy (%) obtained during experiments.

Empirical evidence shows that the gains in prediction accuracy are significant
and occur in both synthetic and real-world datasets. Results point out the need
for future research into feature drift detection and adaptation.

Both Entropy and Symmetrical Uncertainty are computed along a sliding
window, thus allowing adaptation to feature drifts. Finding an optimal window
size is a trade-off without solution, thus, future works include the adopting of
change detectors (e.g. ADWIN [8] and EWMA [24]) to eliminate the need of a
predefined window size, which is a drawback of the proposed method.

Finally, there is the need to investigate the usage of these adaptive metrics
(Entropy and Symmetrical Uncertainty) for the task of dynamic feature selec-
tion for data streams. This would allow a generic filter method that does not
depend on any specific base classifier and that would select features dynamically
according to the occurrence of feature drifts.
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