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Abstract—The hierarchical classification of data streams re-
quires models capable of handling a class hierarchy and updating
themselves whenever a new example arrives, within restrained
processing time and memory consumption. Current state-of-
the-art models store raw instances and handle the hierarchy
locally, performing a high number of computations at every
hierarchy level and with all, eventually redundant, data. This
paper introduces Global k-Nearest Centroids (kNC) and Global
Dribble, two novel methods for the hierarchical classification of
data streams. Both methods use summarization techniques to
represent data with constant computational resources usage and
a global classification approach to process instances in less time
when compared to local strategies. We compare both methods
with a state-of-the-art local classifier, and the proposed methods
achieved a higher number of correct predictions and process
instances nearly twice as fast.

Index Terms—Hierarchical Classification, Data Stream Classi-
fication, Data Summarization

I. INTRODUCTION

Hierarchical classification of data streams is applied to
problems in which the classes associated with instances are
hierarchically structured, and these instances are provided to
the model one by one from the data stream over time. This
kind of problem can be observed, for example, in the real-
time identification of insect vectors of diseases hierarchically
organized by their biological taxonomy, having an important
impact on public health policies [1].

Hierarchical data stream classifiers inherit constraints and
challenges from both traditional hierarchical classification and
data stream classification. First, regarding hierarchical classifi-
cation, classifiers must deal with the existing hierarchy in data
classes, thus predicting a label path representing hierarchical
relationships between labels (or classes) for a given instance
instead of an independent label for a given instance [2]–
[4]. Focusing on data stream classification, classifiers must
handle potentially infinite data, and thus, must process data
sequentially and discard them right after, while also assuming
that their underlying distribution may change over time, a
phenomenon called concept drift [5]–[8].

Despite the research conducted on both data stream and
hierarchical classification areas separately, they do not com-
prehend each other [2], [9]. Besides, current state-of-the-
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art methods introduced for the hierarchical classification of
data streams present limitations when applied to real-world
problems, as they use complete representations of data and
eventually perform redundant steps in their learning models
[10]. In other words, methods that are computationally heavy-
weighted in terms of processing time and memory consump-
tion may represent infeasible strategies in handling potentially
unbounded hierarchical data streams [6]–[8].

In this study, we propose two methods for the hierarchical
classification of data streams: Global k-Nearest Centroids and
Global Dribble. Both methods use summarization techniques,
i.e., incremental centroids [11], and cluster feature vectors
[12] to work with potentially unbounded hierarchical data
streams with constant memory. Both of the proposed methods
follow a global strategy to handle the hierarchy in their
learning process, and thus, process new instances with fewer
comparisons when compared to local state-of-the-art k-Nearest
Neighbors methods [10].

In summary, our contributions are as follows:

• We propose Global k-Nearest Centroids and Global Drib-
ble, two methods for the hierarchical classification of
data streams using summarization techniques. We adapt
and apply summarization techniques, i.e., incremental
centroids [11], and cluster feature vectors [12], as part
of a hierarchical data stream classification process, being
able to work with constant memory and time.

• We propose a global classification approach to handle the
class hierarchy based on the label paths of the nearest
neighbors, thus reducing the dependence on distance
computations and processing new instances performing
less distance computations.

• As a byproduct of this research, the source code of the
proposed methods and the datasets used in the experi-
ments are made available for reproducibility.

The remainder of this paper is organized as follows. Section
II describes the problem of hierarchical classification of data
streams and Section III brings forward related works. Sec-
tion IV describes the proposed methods for the hierarchical
classification of data streams using summarization techniques.
Section V comprises the experimental protocol and the dis-
cussion of the results obtained. Finally, Section VI concludes
this paper and states envisioned future works.



II. PROBLEM STATEMENT

In this section, we introduce the basics of hierarchical
classification of data streams. More specifically, we describe
different approaches that can be used by hierarchical data
stream classifiers to deal with a class hierarchy, including
the local approach used by state-of-the-art related works and
the global approach applied in our proposal, which allow a
more efficient computational resource usage without notice-
able losses in the prediction quality rates.

Formally, we define hDS = [(x⃗t, y⃗t)]∞t=0 to be a hierarchi-
cal data stream providing examples in the (x⃗t, y⃗t) format. Each
example arrives at a unique exclusive timestamp t, where x⃗t

is a set of d-dimensional features and their respective values.
Additionally, y⃗t represents the associated ground-truth label
path (hierarchically structured classes) for the given instance
x⃗t [13].

Given a data stream hDS, a hierarchical data stream clas-
sifier learns a function f t : x⃗t 7→ y⃗t that maps features and
their values x⃗t ∈ Rd to label paths yt ∈ Y [6].

In streaming scenarios, classifiers need to adopt strategies
to support potentially unbounded hierarchical data streams,
which can consequently change their underlying distribution
over time. In other words, they need to work with constrained
computational resources to be able to process incoming in-
stances without discarding them and respond appropriately to
possible concept drifts [5], [9], [14].

To this end, hierarchical data stream classifiers can be
incremental or adaptive by updating or retraining their models
using part of or all data as new data becomes available.
Incremental methods do not have strategies to forget the
information previously learned and may become unstable due
to the size of the model and are not well suited to adapt to
concept drifts. On the other hand, adaptive methods forget the
information previously learned either explicitly or implicitly.

Explicit drift detection regards the application of drift de-
tectors that mostly use statistical techniques with time window
strategies to monitor data behavior and trigger if some change
in data distribution occurs, making the model more suitable to
adapt to changes in data over time [9], [15].

Hierarchical data stream classifiers can use different ap-
proaches to handle the class hierarchy. Figure 1 illustrates
these approaches. Approaches that fall in the Local classifiers
per node (LCN) category use one binary classifier per class in
the hierarchy. Local classifiers per parent node (LCPN) apply
one multi-class classifier per class to predict between its child
nodes. Local classifiers per level (LCL) use one multi-class
classifier at the same level in the hierarchy. Finally, a global
classifier (GC) is a multi-class classifier able to handle all
classes simultaneously while also considering class hierarchy
[2].

As stated at the beginning of this section, we highlight that
a global approach requires less computational resources than
a local approach since it uses a single classifier in contrast to
multiple ones used in any local approach [2], and thus, we
further investigate whether it is more fitted to the constraints
imposed by the hierarchical data streams setting.
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Fig. 1. Hierarchical classification approaches (circles represent classes and
dashed squares enclose classes to be predicted by a classifier).

III. RELATED WORK

The hierarchical classification of data streams task was
first addressed in [10], where the authors proposed a k-
Nearest Neighbors (kNN) classifier to classify hierarchically
structured data streams. The method stores n instances on
buffers assigned to each class node in the hierarchy. When the
model receives a new instance, it applies a sliding window
strategy [14] to forget older data as a first-in/first-out strategy
is followed. Additionally, the method uses local classifiers per
parent node, building sub-datasets of instances at each step
to perform the distance computations required by the kNN
method.

Despite being an effective hierarchical data stream classifier,
the method proposed in [10] has two related main drawbacks
regarding hierarchical classification of data streams: (i) it
stores raw instances on node buffers, and (ii) it uses local
classifiers per parent node.

Let us elaborate on that. Let n be the number of d-
dimensional instances stored on each node buffer, c and g the
number of children and descendants of a given parent node p,
and h the height of the tree representing the class hierarchy.
By using local classifiers per parent node, for each incoming
instance i the method needs to perform ((n×c)+(n×g))×c
distance computations per level on h. In other words, depend-
ing on the h depth, computations tend to the quadratic form
c2×(c×n+g×n)2 of n. On the other side, a global classifier
maintains ((n × c) + (n × g)) × c with a linear n regardless
of h.

Furthermore, by using raw instances on the node buffers, the
distance computations are performed n times on the standard
d2 basis. Alternatively, data summarization techniques can be
used to reduce this dependence and perform only d2 assuming,
for example, in the best scenario, n = 1 to represent the
original instances in a single statistical descriptor [11], [14].
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Fig. 2. General view of Global kNC and Global Dribble learning process.

In this study, we use incremental centroids [11] and cluster
feature vectors [12] to summarize instances and reduce the
dependence on distance computations. Also, we perform a
global approach to handle the class hierarchy based on dis-
tance computations and label path analysis, thus tackling both
drawbacks described above in existing local approaches.

IV. PROPOSED METHODS

In this section, we propose Global k-Nearest Centroids
(Global kNC) and Global Dribble, two global methods for
the hierarchical classification of data streams that rely on
summarization techniques to represent data.

Figure 2 illustrates the steps of the learning process shared
by both methods. After building the hierarchy representation,
each method receives instances it = (x⃗t, y⃗t). A test/prediction
phase starts by obtaining all data from nodes, comparing them
to find nearest neighbors, and applying a global approach via
label path analysis. At this point, the model can be requested
to predict a class (label path) for x⃗t. Next, the instance x⃗t and
the corresponding label path y⃗t are used to update the model,
and older data is discarded through a sliding window. These
steps are described in detail below.

In the hierarchy representation step, both methods build
a tree of nodes. Each node represents a class in the class
taxonomy and contains references to its parent nodes, an in-
stance counter, and a data structure that can be an incremental
centroid in Global kNC or a Cluster Feature Vector (CF ) in
Global Dribble.

The incremental centroid represents the incremental mean
of the instances associated with a given class node [11].
The incremental mean µt is based on incoming instances
it and is computed as described in Equation 1, where x̄t−1

represents the current average, t the number of instances
observed thus far, and x⃗t composes the the arriving instance
it to be incorporated.

µt =
x̄t−1(t− 1) + x⃗t

t
(1)

It is essential to highlight that Global kNC summarizes
data using centroids and discards the instances afterward,
resulting in concise information storage with smaller memory
consumption and fewer distance computations.

On Global Dribble, data are stored using Cluster Feature
Vectors (CFs) [12], representing instances associated with a
given class node as hyperspherical regions with a mean and a
radius. A CF is a triplet in the format CF = (N,LS, SS),
where N is the number of instances of the cluster summary,
and LS and SS are N -dimensional vectors representing the
linear and square sum of the instances, respectively. The mean
(µ) and the radius (r) of a CF are computed as described in
Equations 2 and 3, where d is the number of features available.

µ(CFi) =
LSi

Ni
(2)

r(CFi) =
1

d

d∑
j=1

√
Ni(SSi)− 2(LS2

i ) +Ni(LSi)

N2
i

(3)

As CFs work with additive components, two cluster feature
vectors CFi and CFj can be merged by summing their
components. Equation 4 describes the additive property of
CFs [12], [16]:

CFk = CFi+CFj = (Ni+Nj , LSi+LSj , SSi+SSj) (4)

As in the Global kNC method, it is relevant to highlight that
Global Dribble summarizes data using CFs and also discards
instances right after, thus allowing smaller memory consump-
tion as a consequence of an effective data representation.

After that, when receiving a new it instance, both methods
apply the prequential approach in their processes [7], [9]. In
other words, the new instance is tested and, only after that, is
used to update the model (training).

For testing, the methods obtain all centroids (Global kNC)
or CFs (Dribble) stored at the tree nodes. On Global kNC,
obtaining the centroids is straightforward since the centroids
themselves (mean instances) are stored incrementally. Mean-
while, Global Dribble computes the means of the CFs repre-
senting the central point of the hyperspheres. Besides, Global
Dribble applies an outlier control, retrieving only CFs with a
minimal number of instances represented.

Next, the algorithm calculates the Euclidean distance be-
tween the instance it and the CFs’ centers to find its k-nearest
neighbors.
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Fig. 3. Global approach through label path analysis using label frequency per hierarchy level.

Note that the building of datasets for distance computations
considers the entire hierarchy of the tree. Therefore, the
resulting kNN can represent nodes at any hierarchy level.
In contrast, in local approaches, the building of datasets is
restricted to portions of the hierarchy (by node, by parent
node, or by level) and needs to be performed several times
until reaching the deeper levels of the hierarchy.

In the global approach step, both methods analyze label
paths retrieved from the kNN step, not comparing instances
but the frequency of component labels of each level of the
label paths.

Figure 3 illustrates this process with illustrative label paths
and using k = 5 on the kNN. The most frequent label in each
level is chosen, and the other label paths are discarded in the
analysis of the next level. Ties are decided using the lowest
distance between neighbors. The process is repeated until it
reaches a leaf node.

After performing the test/prediction step, the instance it is
used as a training instance being incorporated into the model
using its ground-truth label. In Global kNC, the centroids
are updated using Equation 1. In Global Dribble, it is first
represented as a CF and then added to an existent CF using
Equation 4.

Note that despite being similar in the test/prediction phase,
both methods use quite different data storage and summariza-
tion strategies in the training/update phase. While Global kNC
summarizes instances in the order of arrival and obtains sliding
mean centroids over the data, Global Dribble checks whether
the instance it is encompassed by any of the CFs stored in
the respective node representing the class of it. If the instance
is encompassed by one of the CFs (i.e., if the instance is
between the mean and the radius of the hypersphere), it is
added to the CF . Otherwise, it starts a new CF .

Finally, the methods apply a sliding window to adequately
respond to possible concept drifts, as well as to maintain
constant computational resource usage during the data stream
processing.

The Global kNC method works with two upper boundaries
n and m in its centroids representing, respectively, the number
of centroids to be stored in each node of the hierarchy and
the number of instances summarized in each centroid. Upon
reaching the upper bound m, Global kNC creates a new
centroid and associates it with a given node. If the number
of centroids exceeds the upper bound n, the oldest centroid is
discarded. Similarly, Global Dribble also works with two upper
boundaries n and m on its CFs representing the number of

CFs to be stored in each node of the hierarchy and the number
of instances summarized in each CF . However, when the
upper bound m is surpassed, the oldest instance is subtracted
from the CF . In other words, the values representing the
current center of the hypersphere described by the CF are
removed. Additionally, if the number of CFs exceeds the
upper bound n, there are no older CF to be discarded since
CFs represent different subconcepts within the same class
(unlike the centroids applied in Global kNC). To solve this,
the two closest CFs are merged using their additive property
(Equation 4).

Algorithms 1 and 2 depict the pseudocodes for the Global
kNC and Global Dribble methods that encompass the steps
described above.

Both algorithms receive a hierarchical data stream hDS
providing instances (x⃗, y⃗) over time, and the above described
n, m and k parameters. The hierarchy representation step
(line 1) and the test/prediction phase (lines 2-10) are similar

Algorithm 1:
Global k-Nearest Centroids (kNC) method for the
Hierarchical Classification of Data Streams

input : hDS – a hierarchical data stream providing instances
(x⃗, y⃗)
n – maximum number of centroids
m – maximum number of instances to be summarized on a
centroid
k – number of nearest centroids

output: ̂⃗yi – a predicted label path for the input instance

1 Tree← classTaxonomy(hDS);
2 foreach (x⃗ ∈ hDS) do
3 foreach (childNode ∈ Tree.root.descendants) do
4 targets← targets ∪ {(childNode.label, childNode.data)};
5 end
6 foreach (target ∈ targets) do
7 target← target ∪ {euclideanDistance(x⃗,target.data)};
8 end
9 targets = (targets)1..k;

10 ̂⃗yi ← mostFrequentInLevel(targets);
11 correctNode← Tree.y⃗i;
12 if (correctNode.newestCentroid.count < m) then
13 correctNode.newestCentroid← µ;
14 end
15 else
16 correctNode.data← correctNode.data ∪ {newCentroid(x⃗)};
17 end
18 if (correctNode.count > n) then
19 correctNode.data←

correctNode.data \ {correctNode.oldestCentroid};
20 end
21 end



Algorithm 2:
Global Dribble method for the Hierarchical Classifica-
tion of Data Streams

input : hDS – a hierarchical data stream providing instances
(x⃗, y⃗)
n – maximum number of CFs
m – maximum number of instances to be summarized on a
CF
k – number of nearest CF means

output: ̂⃗yi – a predicted label path for the input instance

1 Tree← classTaxonomy(hDS);
2 foreach (x⃗ ∈ hDS) do
3 foreach (childNode ∈ Tree.root.descendants) do
4 targets← targets ∪ {(childNode.label, childNode.data)};
5 end
6 foreach (target ∈ targets) do
7 target← target ∪ {euclideanDistance(x⃗,target.data)};
8 end
9 targets = (targets)1..k;

10 ̂⃗yi ← mostFrequentInLevel(targets);
11 correctNode← Tree.y⃗i;
12 if (nearestCF.distance <= nearestCF.radius) then
13 correctNode.nearestCF←

correctNode.nearestCF + newCF(x⃗);
14 if (correctNode.nearestCF.count > m) then
15 correctNode.nearestCF←

correctNode.nearestCF−correctNode.nearestCF.mean;
16 end
17 end
18 else
19 correctNode.data← correctNode.data ∪ {newCF(x⃗)};
20 if (correctNode.count > n) then
21 CF1, CF2 ← findClosestCFs(correctNode.data);
22 CF1 ← CF1 + CF2;
23 end
24 end
25 end

between Global kNC and Global Dribble. However, note
that Dribble performs an additional step to compute CFs’
means (represented by “childNode.data” on line 4). The global
approach by label path analysis is performed by a function
that implements the strategy described on Figure 3 (line 10).
This function receives a set of label paths, recursively removes
infrequent labels at each level of the label hierarchy, and
returns the most frequent label path of the initial set.

Next (from line 11 onwards), both methods update them-
selves and apply the sliding windows differently. The Global
kNC method updates the centroids using the incremental mean
(cf. Equation 1) (line 13) and checks the upper boundaries
m and n. If m is reached, the method creates a new cen-
troid instead of filling the newest one (lines 12-16). If n is
surpassed, the method applies the sliding window strategy
by discarding the oldest centroid (lines 18-20). On Global
Dribble, the method updates the CFs using their additive
property or creating a new CF (lines 13 and 19). In line
13, the incoming instance is encompassed by the nearest CF ,
while in line 19, it is not. The method also checks the upper
boundaries m and n. If m is surpassed, the method subtracts
a mean representation of the hypersphere from the CF (lines
14-16). If n is surpassed, the two closest CFs are merged to
match the number of CFs to n (lines 20-23).

V. ANALYSIS

In this section, we describe the experimental protocol used
to evaluate our methods, compare them to the related work
described in Section III, and discuss the results regarding
prediction and performance rates.

A. Experimental Protocol

To verify the impact of the global approach in the proposed
methods on prediction and performance rates, we perform an
experimental evaluation of Global kNC and Global Dribble,
comparing them against the local kNN proposed in [10].

Table I depicts the datasets used as hierarchical data streams
in our experiments and their main characteristics.

We compared all methods with the same settings across all
datasets varying k, n, and m parameters. We experimented
with k ∈ {1, 3, 5}, n ∈ {1, 5, 10, 15, 20} and m ∈ {5, 10, 30}.
As described in Section IV, n represents the upper bound for
the number of centroids in Global kNC, and for the number
of CFs in Global Dribble. On Local kNN, n represents the
buffer size of raw instances. Similarly, m represents the upper
bound for the number of instances summarized in a centroid
(Global kNC) or a CF (Global Dribble).

We assessed the classifiers predictive correctness using the
well-known hierarchical F-measure (hF ) [17] following a
prequential evaluation method (interleaved test-then-train) [7],
[18]. The hierarchical F-Measure is the harmonic mean of
hierarchical precision (hP ) and hierarchical recall (hR). It
was computed and incrementally averaged for all incoming
instances from the data stream. Equations 5, 6 and 7 depict
hF metric and its components hP and hR, respectively, where
ŷi stands for the predicted label path and yi is the ground-truth
label path for the i-th instance.

hF =
2× hP × hR

hP + hR
(5)

hP =

∑
i |ŷi

⋂
yi|∑

i |ŷi|
(6)

TABLE I
DESCRIPTION OF HIERARCHICAL STREAM DATASETS USED IN THE

EXPERIMENTS.

Dataset Instances Features Classes Labels per level

Entomology [10] 21,722 33 14 4,6,9,14
Ichthyology [10] 22,444 15 15 2,6,10,15
Insects-a-b [1] 52,848 33 6 1,1,2,6
Insects-a-i [1] 355,275 33 6 1,1,2,6
Insects-i-a-r-b [1] 79,986 33 6 1,1,2,6
Insects-i-a-r-i [1] 452,044 33 6 1,1,2,6
Insects-i-b [1] 57,018 33 6 1,1,2,6
Insects-i-g-b [1] 24,15 33 6 1,1,2,6
Insects-i-g-i [1] 143,323 33 6 1,1,2,6
Insects-i-i [1] 452,044 33 6 1,1,2,6
Insects-i-r-b [1] 79,986 33 6 1,1,2,6
Insects-i-r-i [1] 452,044 33 6 1,1,2,6
Insects-o-o-c [1] 905,145 33 24 4,10,14,24
Instruments [10] 9,419 30 31 5,10,31



hR =

∑
i |ŷi

⋂
yi|∑

i |yi|
(7)

Regarding performance assessment, we measured the time
performance of all methods by calculating the number of
instances that the method can process and classify per second.

The experiments in this paper were performed using Python
3.7. The scripts containing the source code of Global kNC and
Global Dribble methods, as well as the datasets, are freely
available for download and reproducibility1.

Finally, the results obtained by all methods were compared
using a significance test of multiple comparisons. More specif-
ically, we used the Friedman test [19] to make multiple com-
parisons in non-parametric data assuming a null hypothesis
that there is no significant difference between the results of all
methods in terms of predictive and performance rates. In case
of the null hypothesis being rejected, we applied the Nemenyi
post-hoc test [20] to identify significant differences between
two specific classifiers. All significance tests considered a 95%
confidence level according to the protocol provided in [21].

B. Results and Discussion

In this section, we detail and discuss the results obtained
during experimentation. The analysis was performed con-
cerning predictive correctness and computational performance
comparison between all methods. Overall, both global methods
outperform the local method in both predictive correctness and
computational resources usage. These claims are detailed and
validated below.

1) Predictive correctness: Table II depicts the hierarchical
F-measure (hF ) obtained by the methods tested (highest
values per dataset are highlighted in bold). These results
represent the best hF rates obtained by methods considering
the averaged best-performing parameter configuration across
all datasets. In addition, we appended to Table II the average
ranking for all methods per dataset.

First, we highlight that the Global kNC and Global Dribble
methods obtained the best results in 13 of the 14 datasets, with
average hF rates of 75.63% and 74.38%, respectively, against
values close to 72% of the Local kNN method. Consequently,
both methods obtained the best average rankings of 1.36 for
Global kNC and 1.86 for Global Dribble.

In addition, we emphasize that Local kNN and Global kNC
methods obtained their best results with more comprehensive
data representations (n = 20), while Global Dribble had
the best performance with small representation (n = 5).
The Dribble method usually obtains better prediction rates
with small numbers of CFs (n) due to the possible noise
incorporation since larger numbers of CFs allow the storage
of a few instances that are not representative for the model,
in contrast to the main CFs with most data.

1http://www.ppgia.pucpr.br/∼jean.barddal/datasets/globalkNCDribble.rar

TABLE II
hF (%) OBTAINED BY METHODS CONSIDERING THE AVERAGED

BEST-PERFORMING PARAMETER SETTING ACROSS ALL DATASETS.

Local kNN Global kNC Global Dribble

Datasets

n = 20

k = 1

n = 20
m = 10
k = 3

n = 5
m = 30
k = 1

Entomology 51.51 57.41 53.71
Ichthyology 40.55 41.72 37.11
Insects-a-b 80.95 84.37 83.33
Insects-a-i 79.14 82.60 82.55

Insects-i-a-r-b 79.49 84.28 83.42
Insects-i-a-r-i 78.52 82.62 82.11

Insects-i-b 79.78 84.03 83.91
Insects-i-g-b 83.29 87.99 86.66
Insects-i-g-i 78.94 82.93 83.11

Insects-i-i 78.63 82.57 83.08
Insects-i-r-b 80.14 84.50 83.48
Insects-i-r-i 78.60 82.62 82.70

Insects-o-o-c 55.24 65.56 59.50
Instruments 65.42 55.59 56.68

Avg. hF 72.16 75.63 74.38

Avg. Ranking 2.79 1.36 1.86

2) Processing rates: In addition to predictive correctness,
data stream classifiers must be able to handle data sequentially
within limited time frames.

Therefore, Table III depicts the instances per second rates
obtained by methods with the same best-performing param-
eters settings (highest values per dataset are highlighted in
bold).

Global Dribble method obtained the best results in all
datasets, consequently reaching the best average of instances
processed per second (479.60) and the best average ranking
(1.00) among all methods. Such a performance by Dribble

TABLE III
INSTANCES PER SECOND RATES OBTAINED BY METHODS WITH AVERAGED

BEST-PERFORMING PARAMETERS SETTINGS.

Local kNN Global kNC Global Dribble

Datasets

n = 20

k = 1

n = 20
m = 10
k = 3

n = 5
m = 30
k = 1

Entomology 127 200 382
Ichthyology 157 291 380
Insects-a-b 151 353 543
Insects-a-i 153 354 542

Insects-i-a-r-b 153 354 541
Insects-i-a-r-i 153 351 542

Insects-i-b 148 345 541
Insects-i-g-b 158 372 542
Insects-i-g-i 154 359 543

Insects-i-i 152 354 545
Insects-i-r-b 153 356 543
Insects-i-r-i 153 353 540

Insects-o-o-c 75 127 275
Instruments 79 164 256

Avg. inst/sec 140.43 309.40 479.60

Avg. Ranking 3.00 2.00 1.00



can be associated with its best-performing results obtained
with small values of n since the method may eventually take
advantage of the representation of data streams with more
stable concepts.

In other words, depending on the data distribution, methods
that use data summarization techniques can benefit from
summarizing the entire data stream with sufficient representa-
tiveness in even just a few centroids or CFs.

It is also important to highlight that, despite the fact of
being adaptive, both Global Dribble and Global kNC methods
can also work incrementally by eliminating the storage’s upper
boundaries from the centroids or CFs, and thus, enhance their
ability to represent stabler data streams in their summarization
strategies.

Additionally, note that the Global Dribble method obtained
its best performance with small values in n and therefore
performed computations and distance comparisons between
a much smaller volume of data when compared to other
methods.

Also, we highlight that Global kNC could obtain a better
average ranking against Local kNN even using equal size data
representations (n = 20).

3) Hyper-parameter sensitivity: Moreover, we evaluate the
general behavior of the methods over variations of the n
parameter. Tables IV and V depict, respectively, the average
Hierarchical F-Measure (%) and the average instances per
second rates obtained by methods on each variation of n.

Global kNC and Global Dribble showed the best average
results in all variations of n, with Global Dribble obtaining
the best result with n = 1 and Global kNC with n ∈
{5, 10, 15, 20}, resulting in the best average ranking (1.40)
for the Global kNC method.

Local kNN and Global Dribble methods had the second-
best results, with equal average rankings of 2.40. As discussed
above, Global Dribble performs better with small values of n,
while Local kNN benefits from bigger data storage.

In terms of instances per second rates, Global kNC and
Global Dribble stand out from Local kNN with the first and
second rankings in all n variations, processing, respectively,
around 415 and 381 instances per second. On average, both
methods can process at least 70% more instances than the local
approach.

TABLE IV
AVERAGE HIERARCHICAL F-MEASURE (%) OBTAINED BY METHODS ON

EACH VARIATION OF n.

n Local kNN Global kNC Global Dribble

1 62.82 68.77 72.52
5 67.51 73.52 69.88

10 69.90 74.65 69.74
15 71.17 75.14 69.49
20 72.08 75.44 69.28

Avg. hF 68.70 73.50 70.18

Avg. Ranking 2.40 1.40 2.40

TABLE V
AVERAGE INSTANCES PER SECOND RATES OBTAINED BY METHODS ON

EACH VARIATION OF n.

n Local kNN Global kNC Global Dribble

1 459.07 551.76 527.77
5 316.64 467.20 466.17

10 213.57 398.77 379.49
15 169.21 351.00 297.00
20 140.43 310.36 236.85

Avg. inst/sec 259.79 415.82 381.46

Avg. Ranking 3.00 1.00 2.00

4) Overall results and statistical validation: Finally, to
validate the better results obtained by Global kNC and Global
Dribble in the experiments, we applied Friedman and Nemenyi
statistical significance tests (as described in Section V-A).
We used as sample sets the results obtained by all methods
with all parameter variations and performed multiple pairwise
comparisons considering the hF and the instances per second
rates. Table VI summarizes these sample sets by averaging all
hF and instance per second rates obtained by methods and
shows the overall average ranking of methods.

The Friedman test showed a statistical difference between
hF rates and the post-hoc Nemenyi test identified the differ-
ence between both global methods and the local kNN. Figure
4 shows a critical difference (CD = 0.40) chart obtained after
Friedman and Nemenyi tests for the hF rates obtained by the
methods.

Global kNC and Global Dribble do not differ significantly,
with average rankings of 1.37 and 1.73, respectively. In con-
trast, Local kNN (in third place) obtained an average ranking
of 2.90, surpassing more than twice the critical difference from
Global Dribble.

Similarly, regarding computational performance, the Fried-
man test showed a statistical difference between instances per
second rates obtained by the methods. Likewise, the post-
hoc Nemenyi test identified a difference between both global
methods and local kNN. Figure 5 shows the critical differences
(CD = 0.40) chart obtained after Friedman and Nemenyi tests
for the instances per second rates.

The difference between Global kNC (avg. ranking = 1.31)
and Global Dribble (avg. ranking = 1.69) against the local
method is even more noticeable, with Local kNN in third place
(avg. ranking = 3.00), surpassing the critical difference from
Global Dribble 3.31 times and from Global kNC 4.27 times.

TABLE VI
OVERALL AVERAGE HIERARCHICAL F-MEASURE (%) AND INSTANCES

PER SECOND RATES OBTAINED BY METHODS.

Local kNN Global kNC Global Dribble

Avg. hF 69.60 74.42 73.80
Avg. Ranking 2.90 1.37 1.73

Avg. inst/sec 259.79 418.81 395.49
Avg. Ranking 3.00 1.31 1.69



Fig. 4. Critical differences chart for the hierarchical F-measure (hF ) rates
obtained by methods.

Fig. 5. Critical differences chart for the rates of instances per second rates
obtained by methods.

These results prove that Global kNC and Global Dribble
methods can use the global approach to obtain a more effec-
tive strategy to classify hierarchical data streams, statistically
outperforming the Local kNN method in prediction correctness
and processing speed.

VI. CONCLUSION

In this study, we introduced Global kNC and Global Drib-
ble, two global methods for hierarchical data stream classifi-
cation based on data summarization techniques.

Experimental results showed that the proposed methods
obtained significantly better hierarchical goodness-of-fit and
processing speed rates when compared to local counterparts.

To facilitate the reproducibility of the proposed methods and
experiments, we provide their source code and the datasets
used.

As future works, we plan to analyze different distance met-
rics in the kNN and the development of novel summarization
techniques and global classification approaches. Furthermore,
we also wish to investigate different stopping criteria during
the hierarchy traversing to perform partial predictions with
varying confidence rates and to study the impact of adding
explicit drift detectors on the classification results.
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[21] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.


