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Abstract—Improving results by optimizing process execution
is one objective of major companies. For these corporations, the
main point for achieving better results is the good maintenance of
supply chain management. The most important supply chain met-
ric is Delivery in Full and On Time (DIFOT). DIFOT measures
how well a supply chain delivers value to the customer. In this
work, we bring forward an analysis of DIFOT prediction from
large Brazilian food company. More specifically, we compare a
batch and online learning algorithm for DIFOT prediction and
depict why the latter is suitable for this problem. Furthermore,
we report a feature drift analysis to identify whether there
are considerable shifts along with the dataset timespan. As
a byproduct of this research, we make the dataset used in
this analysis publicly available for future research in DIFOT
prediction.

Index Terms—Dataset, Data Streams, Feature Drift, DIFOT

I. INTRODUCTION AND MOTIVATION

The role of the manufacturing industry is to create wealth
by adding value and selling products. Common to all manu-
facturing companies is the need to control material flow from
suppliers through the value-adding processes and distribution
channels. The supply chain is the connected series of activities
that concerning planning, coordinating, controlling material,
parts, and finished goods from suppliers to the customer [1]].
It is worried about two distinct flows over the organization:
material and information. The supply chain’s scope begins
with the source of the supply and ends at the point of
consumption. It extends much further than merely a concern
with the physical movement of material and is just as much
concerned with management, purchasing, facility planning,
customer service, and information flow as with transport and
physical distribution. Therefore, the supply chain is the series
of steps and processes by which value is added to a product
and through which it is delivered to an end customer [2], [3]].

A significant supply chain Key Performance Indicator (KPI)
metric is Delivery in Full and On Time (DIFOT). This metric is
the ultimate performance measure of a supply chain. DIFOT
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directly measures how well a supply chain is fulfilling the
delivery of value to the customer. It would be inconceivable for
business not to measure profit or cash flow. It should be equally
inconceivable for manufacturing or distribution businesses not
to manage DIFOT. DIFOT, in its simplest form, is the ratio
between the number of orders that were delivered on time,
with the ordered items supplied in the quantity required on
the day that the customer required them, and the total number
of orders shipped [3].

Given the relevance of the DIFOT KPI in a supply chain,
this work contributes with a comparative study of machine
learning techniques batch and online supervised classification
for DIFOT predictions. To the best of our knowledge, there are
no studies have dealt with DIFOT prediction using machine
learning techniques, specifically using data stream mining,
only some barely studies that waste minimization being stud-
ied and taxonomy in Food Supply Chain (FSC) [4], [5]] and
risk prediction [6]. Thus, we propose the use of traditional
batch and online learning approaches to predict the occurrence
of DIFOT for a sales order using a priori data, i.e., data that is
obtained during the creation of the sales order. Consequently,
it is possible to know if the sales order will achieve the
DIFOT, thus allowing the manager to mitigate weakness that
may cause the failure of that sales order, which ultimately
contributes to the DIFOT final company score.

The dataset of this paper was obtained from food company
historical data. The data were collected from the period of
2018-01 to 2019-08. Since it is aim to predict the occurrence of
DIFOT at the time of registering a new sales order, the problem
becomes difficult to solve because the features used are all
obtained a priori. Thus, at the moment when a sales order is
created, some information is still undefined, such as the carrier
that will deliver, or if it is possible to optimize the production
to meet the demand, or even if it will be possible to deliver
the entire quantity requested. In this paper we investigate how
each feature, such as these mentioned, can impact in different



ways the occurrence of DIFOT. Thus, we intend to answer
two main research questions:

o Are data stream approaches better performing than batch
ones in this real-world dataset?

o Considering the intrinsic time series in this dataset, are
there feature drifts in its data?

The remainder of this paper is organized as follows. We
provide a discussion about some papers that applied machine
learning techniques to the supply chain and a brief review
of the related studies in Section [ Next, we describe the
characteristics of the dataset and details about the real-world
database proposed in Section Next, we show our experi-
mental protocol, indicating the batch and online methods used,
validation process, metrics to evaluation, and hyper-parameter
tuning approaches in Section We present the main results
obtained and comments on the discoveries on the dataset in
Section [V] and conclusion in Section [VI}

II. LITERATURE REVIEW

In this section, we present a research review of machine
learning methods applied to supply chains (Section and
data stream classification applications related to this work
(Section [[I-B).

A. Supply Chain Management

The supply chain management occurs along with a network
of upstream and downstream organizations, of both relation-
ships and flows of material, information, and resources [2].
Supply chain professionals struggle to handle large amounts
of structured and unstructured data. They are surveying new
techniques to investigate how data are produced, captured, or-
ganized, and analyzed to give valuable insights into industries.
Big data analytics is a popular approach for overcoming such
problems [7]].

Recently, some studies have indicated the benefits of using
big data methods in logistics and supply chain management.
Mishra and Singh [4] proposed a big data analytics approach
for waste minimization in food supply chains. Shukla and
Kiridena [{8] introduced a fuzzy rough sets-based multi-agent
model for configuring supply chains in dynamic environments.
Along with these studies, there are many areas within supply
chain management that could benefit from big data methods
and technologies.

For instance, Baryannis et al. [6] proposed a risk prediction
framework that uses data-driven Artificial Intelligence (AI)
techniques and relies on the collaboration and interactivity
between Al and supply chain experts. The authors defend
a trade-off between the interpretability of the models and
the best choice to measure the results, which sometimes is
necessary a decrease on overall result over something like a
black box. Zhang et al. [9] proposed an improved Random
Forest to deal with online supply chain finance for risk
evaluation and provide a scientific basis for risk assessments.

Angarita-Zapata et al. [5] designed a taxonomy for FSC
that categorizes Computational Intelligence approaches and
their relationship with FSC. According to them, our work is

a distribution problem that could be solved with knowledge
discovery and function approximation. Angarita-Zapata et al.
highlight the challenges involving intersecting FSC and ma-
chine learning methods, mainly incremental learning, which
has many gaps to be solved. Thus, in the next subsection we
show the most relevant and useful methods for this task.

B. Data Streams Classification Domain Applications

Ramirez-Gallego et al. [10] survey the literature sum-
marizing, categorizing, and analyzing the contributions on
data preprocessing related to streaming data and some batch
methods. The experiments were performed in synthetic data
using Massive Online Analysis tool (MOA) and real datasets
in the textual domain, and they conclude with claims to
needed feature selection evolution in data streaming scenarios.
Similarly, Barddal et al. [11f] evaluated different credit score
datasets using the most relevant methods for data stream
classification. They also analyzed the feature importance in
the credit scoring problem over time and reported comparable
results to batch approaches in two of three datasets tested.

Won et al. [12] evaluated several feature selection tech-
niques and provided empirical drift adaptation results via
active learning. The method is composed of a drift adapta-
tion system with subsequent active learning for performance
recovery. The dataset used from different domain applications
such as conflict detection, airline delay prediction, and text
classification. In the last similar context, De Moraes and
Gradvohl [[13] presented a comparative study of six feature
selection methods for text stream classification with the pres-
ence of feature drift. They also proposed the Online Feature
Selection with Evolving Regularization algorithm, which uses
regularization to dynamically correct the model complexity,
thus reducing feature drift impacts.

Melidis et al. [14] proposed a method to tackle concept
and feature drift using two components: sketch to maintain
an updated feature space and an ensemble to average out
potential drift on features. The domain application of their
work is related to the textual classification of data streams. In
the same domain, Shivakumaraswamy et al. [15] introduce a
framework for active feature selection, designed to adapt the
feature space over a stream of opinionated documents from the
Amazon dataset, and this framework shows benefits compared
to the default model. Also, in a similar context, Fahy and Yang
[16] evaluate an algorithm-independent in textual and image
streams for dealing with feature drift to be used with any of
the density-based clustering.

Holmberg and Xiong [[17]] proposed a method to deal with
feature drift in non-stationary data streams benchmark in
MNIST public dataset. The method lies in deep reconstruction
networks that are continuously updated with new instances.
The networks are used to detect the changes and also to
dynamically rank the importance of features selection. Sah-
moud and Topcuoglu [18|] proposed a framework to deal with
the classification of data streams with feature drift. Their
framework builds a dynamic multi-objective evolutionary al-
gorithm called Dynamic Filter-Based Feature Selection with



an Artificial Neural Network to classify the data streams by
using only the features selected. Sahmoud and Topcuoglu
evaluated their framework using four synthetic datasets, a
common approach in the data stream classification domain
due to scarcity of real-world databases essentially ephemeral.

Chamby-Diaz et al. [19] presented an algorithm called
Dynamic Correlation-based Feature Selection (DCFS) that
determines which features are the most important in a data
stream. The DCFS uses an adaptive strategy based on a
drift monitor to update the relevant features subsets dynami-
cally. The researchers benchmark four real datasets and eight
synthetic. In the same way, Duda et al. [20] proposed the
Random Forest with Features Importance (RFFI), which uses
the measure of feature importance as a drift detector. The
RFFI implements solutions inspired by the Random Forest
algorithm to the data stream scenarios. The authors evaluated
their method in Random Tree Generator (RTG) and Electricity
prediction.

Duarte and Gama [21]] presented a study on feature ranking
from data streams in online learning models. They proposed
three new online feature ranking algorithms designed for
Hoeffding-based methods. They also implemented three ap-
proaches in AMRules, a streaming regression method for
learning rules. Ferone and Maratea [22f elaborated a variation
of the QuickReduct algorithm suitable for processing data
streams: it builds an evolving reduct that dynamically selects
the features in the stream, removing the redundant ones and
adding the newly relevant ones as soon as they become such.

Zhao and Koh [23]] presented a framework to detect and de-
scribe feature drift in an unsupervised way using Wasserstein
and Energy distance measures. To the best of our knowledge,
no one study has been proposed to apply online approaches in
Supply Chain domain application. Thus, we show the most
relevant known techniques to benchmark in the proposed
DIFOT dataset.

III. A NEwW DIFOT DATASET

The dataset brought forward in this pape was obtained
from a Brazilian multinational food company’s historical data.
The data are dated from the period of January 2018 to August
2019.

Date and time features have given rise to new features such
as day, month, week, and weekday, similar to [6]. At the end
of this preprocessing phase, the dataset contained a total of
54 features. Among all the features, some are day, week,
and month of order creation date; day, week, and month of
preparation date for delivery; distance between the distribution
center and customer. Some features classify the quality of
roads in the location of the distribution center and client.
There are also weather characteristics for the preparation date
and the possible delivery date. The categorical features, which
are: sales-type, sales document type, sales organization, sales
channel, customer segmentation code, and distribution chan-
nel, all were transformed using a simple encoding strategy.

! Available at: https:/web.inf.ufpr.br/luizoliveira/difot-dataset/

TABLE I
DESCRIPTION OF THE FEATURES AVAILABLE IN THE PROPOSED DATASET
(I: INTEGER, C: CATEGORICAL, F: FLOAT, DC: DISTRIBUTION CENTER).

Features Data Description/Group
Numbers Types
{1, 2, 3, 4} I Order shipping {day, month, week, weekday}
5 I Days between order creation and shipment
6 C Sale Type
7 C Distribution channel
8 C Sales document type
9 C Sales organization
10 C Sales channel
11 F Order average gross weight
12 F Distance between the DC and the customer
13 C Customer segmentation code
{14, 15, 16, 17} 1 Order creation {day, month, week, weekday }
{18, 19, 20, 21} F | Parts preparation {day, month, week, weekday }

Historical score for the occurrence of Difot
in the month the order was {created,
created grouped by sales type,
created grouped by distribution channel,
created grouped by document type}

{22,23,24,25}| F

26 I Quantity different items in the sales order

77 F Historical average gross weight of materials
sold in the month that the order was created

28 I Historical average of orders created in the

month that the order was created
Quality score set as {GOOD, REGULAR,
BAD, AWFUL} for highways in the
client’s state

{29, 30, 31,32} | F

33 F Final score for highways in the client’s state
Quality score set as {GOOD, REGULAR,
{34, 35, 36, 37} F BAD, AWFUL} for roads in the DC state
38 F Final score for highways in the DC state
39 F Climatic altitude on the first day after the
shipping date in the vicinity of the DC
{40, 41} F {Precipitation, Humidity} on the first day after
’ the shipping date in the vicinity of the DC
0 F Wind speed on the first day after the

delivery date in the vicinity of the DC
{Climatic altitude, Precipitation, Humidity,
Wind speed} on the second day after the
shipping date in the vicinity of the DC
{Climatic altitude, Precipitation, Humidity,
Wind speed} on the first day after the
shipping date in the vicinity of the customer
{Climatic altitude, Precipitation, Humidity,
Wind speed} on the second day after the
delivery date in the vicinity of the customer
Label [1=DIFOT, 2=NON-DIFOT]

{43, 44, 45,46} | F

{47, 48, 49,50} | F

{51,52,53,54}| F

55 I

This assigns an integer value for each distinct feature category,
that is, if a categorical feature has only three states, the
encoding process will generate the values 0, 1 and 2. As a
final step for feature preparation, all features were subject to a
scaling standardization algorithm. The entire dataset comprises
1,198,059 instances distributed into two imbalanced classes:
DIFOT (985,052) and Non-DIFOT (213,007). Figure [T| shows
the distribution class monthly with its respective amount of
instances and Table [I| details the features available in the
dataset alongside their types and descriptions.
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Fig. 1. Distribution of instances per month of creation order.

IV. EXPERIMENTAL CONFIGURATION

In this section, we present the batch and online learning
approaches used to train the classifiers in DIFOT (Section
[[V-A). Section describes the metric used to evaluate
the algorithms and to measure the feature importance. Section
details the validation methods applied to benchmark the
classifiers. Finally, in Section are the hyper-parameters
used in the experimentation.

A. Learning algorithms

1) Batch methods: The classical algorithms from Sklearrﬂ
were experimented to allow us to compare with online learn-
ers: probabilistic Naive Bayes (NB), decision tree J48 clas-
sifier, Random Forest (RF) ensemble, and Balanced Bagging
Classifier (BBC).

2) Very Fast Decision Tree: The Hoeffding Tree (HT) or
VEDT [24] is a classifier based on tree decision, which
shows better results than traditional methods (i.e. C4.5) in data
streams. The use of the Hoeffding threshold along the node
decision tree, without the entire information about the dataset,
allows its application in online learning.

3) Hoeffding Adaptive Tree: This classifier is an extension
of VFDT [25]] which uses the concept drift detector Adaptive
Sliding Window (ADWIN) [26]. Same as VFDT, the HAT may
uses different base classifiers on its leaves decision trees built.

4) Leveraging Bagging: It is an OzaBag extension with
some improvements [27]. In summary, the difference among
the methods is on Poisson distribution, in which LevBag uses
A = 6, besides using ADWIN to concept drift detection.
Therefore, the authors’ experimental results showed better
results compared to OzaBag.

2 Available at: https:/scikit-learn.org/stable/

5) Adaptive Random Forest: It is a modification of RF
which deals with data streams [28]]. The ARF uses decision
trees on its base, and thus, it achieves satisfactory results in
data streams and naturally deals with feature drifts.

6) Adaptive Random Forest with Resampling: 1t is a clas-
sifier designed to deal with imbalanced datasets [29]. ARFRE
resamples instances based on the current class label distribu-
tion.

7) Cost-sensitive Adaptive Random Forest (CSARF): The
CSAREF is an ARF variant tailored to handle class imbalance
in online learning tasks [|30]]. The main CSAREF traits include:
the assignment of weights to each internal tree; the addition
of a sliding window to observe the classes distribution; a
modification in the learning process to ensure that all trees
train with minority class; and the assignment of cost sensitivity
with two strategies (local and global).

8) Kappa Updated Ensemble: The KUE is an ensemble
method that is a combination of online and block-based
approaches that uses Kappa statistic for dynamic weighing
and selection of base classifiers [31].

B. Evaluation metric and feature importance

To compare batch and online learning methods in DIFOT
imbalanced dataset, we used F1 score or F-measure, which
is the harmonic average between precision and recall with
equal importance to them, see Equation (I). In our preliminary
experiments, we benchmark some methods using accuracy,
but we notice trend to majority class. Thus, and according
to [6]], the F1 score is suitable for imbalanced datasets, then
we compute the macro, which sums the F1 score for each class
and takes the mean for each of them.

Fl — 2 x Prec%s%on x Recall 0
Precision + Recall

In this work, we analyzed the feature importance of the
features using Mean Decrease Impurity (MDI) [32]. MDI
ranks features according to their position in RF. It is a weighted
sum of values obtained during the split that accounts for the
number of samples, see Equation (2). t; is a tree inside the
ensemble of trees T' = t1,to,...,tg, Ny is the number of
examples observed in a split node b, IV is the total number of
samples in the entire tree, J(b) is the goodness-of-fit computed
during the split of a node b, and §2(b) is a function that returns
the feature X; € X got in b.

if Q(b) =x;

MDI(z;) )
otherwise

2

T|Z§:{Nt 0

C. Validation methods

We adopted two types of validation: holdout and test-then-
train. First, in holdout approach validation, we used different
ratios of months for training and testing, including 40%-60%,
50%-50%, and 60%-40%. We experimented with some other
splits like 70%-30% and 80%-20%, but the final results did
not change so much. The main reason for testing different
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proportions of the dataset here is to check the impact of
more or less training data and whether the behavior of DIFOT
changed over the months.

Second, the monthly test-then-train validation scheme con-
siders that each month is used for training right after it is used
for evaluation, except for the first month that is used solely for
training. The main investigation here is to compare the results
obtained using a classifier that is constantly updated with new
instances against a model that was trained until a specific time.

D. Hyper-parameter tuning

The learning algorithms used possess different hyper-
parameters that may impact the performance of the models
to be created. The methods were tuned so that the F-measure
metric during the test was optimized. The hyper-parameters
tested during this process for both batch and online learning
methods are given in Table [ll} The only classifier unreported
was NB, as no hyper-parameters are available for tuning.

TABLE 11
HYPER-PARAMETERS TWEAKED DURING THE TUNING PROCESS FOR
BATCH AND ONLINE CLASSIFIERS.

Method Hyper-Parameter [ Values ]
Criterion {Gini, Entropy }
748 Minimum samples split {2, 50, 100, 200}
Maximum features {2, v/n_features}
Class weight {None, Balanced}
RF Number of estimators {10, 100}
*Plus same others of J48
Number of estimators {10, 100}
BBC {RandomUnder, RandomOver,
Sampler SMOTE, TomekLinks,
SMOTETomek }
Numeric estimator {Gaussian with 4, 7, 10, 12 bins}
Grace period {2, 50, 100, 200, 500}
HT/HAT Criterion {Infogain, Gini}
Pre-prune {True, False}
Leaf prediction {NBAdaptive, NB}
Base learners {HT, ARFHT}
Ensemble size {10, 50, 100, 150}
LEVBAG 5 lia ADWIN 70, 0.002}
*Plus same others of HT/HAT
Ensemble size {10, 50, 100, 150}
Features mode {v/n_features, Percent, Int}
ARF Features per tree {2, 3, 5, 10}
Drift detection {ADWIN with delta 0, 0.002}
Warning detection {ADWIN with delta 0, 0.002}
*Plus same others of HT/HAT
Tree learner {HT, ARFHT}
ARFRE *Plus szllme others of ARF
Imbalance window {1000, 10000}
CSARF Threshold mode {Local, Global}
*Plus same others of ARF
Learner {HT, ARFHT}
KUE Member count {10, 50, 100, 150}
Chunk size {1000, 10000}
*Plus same others of HT/HAT

V. RESULTS AND ANALYSIS

In this section, we analyze both batch and data stream
learning algorithms in the context of the DIFOT dataset

previously presented in Section The results obtained will
be discussed separately and in 3 steps: first, we report and
analyze the F-measure results obtained using batch learning
algorithms when trained and tested using different proportions
of the dataset using holdout validation. The goals with this
analysis are (i) to verify whether more training data directly
translates to higher F-measure value on test data, and (ii) to
pick the best performing classifier for further comparisons
against data stream approaches; Second, we compare different
data stream mining algorithms in terms of F-measure. The
goal is to identify whether continuously updating the predictive
models using a monthly test-then-train validation process leads
to higher prediction rates without damaging F-measure; finally,
we analyze feature importance according to MDI.

A. Results Monthly

We initiate our analysis by batch methods monthly using
under and oversampling according to Table We experi-
mented with some others sampling techniques, but under and
oversampling has been performed better in this imbalanced
dataset. The best macro F-measure achieved was 0.75 in May
using RF-Under, while the mean of all periods was 0.71 and
a standard deviation of 0.04 (see Figure |2 to summarized
results). However, the worst result using RF was 0.56 in March
using oversampling, but the NB poorly achieved only 0.13 in
the same time. Notice that all other batch methods showed
poor performance, including BBC with a mean of less than
0.51.

TABLE III
MAIN RESULTS MONTHLY FOR BATCH METHODS.
= 5 -
5 7} 5 = I S o o
= = =1 = ) o ) Z
= >
ElS315|35]18(8|8|8]|8
Sl a | & | 2| 8 | &
=l z | = | & 2 z | 2| = 2
02 | 0.61 | 0.67 | 0.71 | 0.61 | 0.59 | 0.60 | 0.67 | 0.58
03 | 0.13 | 0.53 | 0.63 | 0.36 | 0.13 | 0.55 | 0.56 | 0.38
04 | 0.12 | 066 | 0.72 | 0.46 | 0.12 | 0.59 | 0.70 | 0.53
05| 0.13 ] 069 | 0.75 [ 050 | 0.13 | 0.61 | 0.72 | 0.50
06 | 0.22 | 0.67 | 0.71 | 0.52 | 0.24 | 0.60 | 0.64 | 0.52
07 | 0.19 | 0.53 | 0.66 | 0.41 | 0.19 | 0.57 | 0.63 | 0.41
08 | 0.71 | 0.70 | 0.74 | 0.61 | 0.71 | 0.61 | 0.72 | 0.55
09 [ 0.16 | 0.68 [ 0.73 | 0.52 [ 0.17 [ 0.60 | 0.70 | 0.54
10 | 0.18 | 0.67 | 0.72 | 0.47 | 0.23 | 0.60 | 0.71 | 0.50
11 | 0.60 | 0.68 | 0.73 | 0.55 | 0.59 | 0.62 | 0.69 | 0.55
12 |1 0.29 | 0.66 | 0.73 | 0.55 | 0.27 | 0.59 | 0.67 | 0.54

Table |[V]| are shown the results obtained using online learn-
ers monthly. The ARF method achieved the best results for
every month, and LevBag, CSARF, and KUE appeared with
competitive F-measure values. Considering that CSARF and
KUE are projected for imbalanced datasets, we believe that
an average of 0.74 of F-measure (see Figure [3| to summarized
results) are satisfactory results that overcome batch methods.
Surprisingly, for incremental approaches, the hyper-parameter
tuning does not deliver improvements, and all the results were
obtained using the default configuration.
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Fig. 2. Summarizing results monthly for batch methods.

TABLE IV
MAIN RESULTS MONTHLY FOR ONLINE APPROACHES.
@]
=
£ S 25 B2
= == = < &~ =
S| 2z | 2|35 %8| =
02 | 0.67 | 0.70 | 0.69 | 0.79 | 0.81 | 0.77 | 0.78 | 0.76
03 | 056 | 064 | 0.64 | 0.74 | 0.75 | 0.70 | 0.72 | 0.73
04 | 051 | 0.71 | 0.69 | 0.76 | 0.76 | 0.72 | 0.73 | 0.73
05| 071 | 074 | 074 | 0.75 | 0.77 | 0.72 | 0.72 | 0.75
06 | 0.61 | 0.63 | 0.67 | 0.79 | 0.81 | 0.76 | 0.78 | 0.76
07 | 054 | 062 | 073 | 0.75 | 0.76 | 0.73 | 0.73 | 0.74
08 | 071 | 0.72 | 0.74 | 0.75 | 0.76 | 0.73 | 0.73 | 0.75
09 | 0.71 | 072 | 0.72 | 0.75 | 0.76 | 0.73 | 0.74 | 0.74
10 | 0.69 | 0.70 | 0.70 | 0.73 | 0.74 | 0.71 | 0.71 | 0.73
11 | 0.67 | 0.69 | 0.71 | 0.74 | 0.75 | 0.71 | 0.72 | 0.73
12 | 0.63 | 0.66 | 0.67 | 0.74 | 0.76 | 0.73 | 0.74 | 0.72
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Fig. 3. Summarizing results monthly for online methods.

It is important to highlight that ARFRE also achieved good
results with a macro F-measure mean of 0.73. We notice a
stable behavior during the months for every method with the
best results for February (0.81 with ARF, 0.79 for LevBag,
and 0.78 using CSARF) and June (0.81, 0.79, and 0.78 for
AREF, LevBag and CSAREF, respectively).

B. Results for Training with Forty Percent of Data

Another validation approach applied in this work was a
holdout method using 40% of the dataset to train the algo-
rithms and 60% to test the classifier. In the first validation, we
experimented with batch methods using under and oversam-
pling, see Table [V] The best classifier was RF-Under with 0.73
of average F-measure (see Figure [] to summarized results)
achieving until 0.75 in May and August. NB-Under also
achieved interesting results with 0.69 of average F-measure.
We notice that the BBC had a poor performance since the
method is designed to deal with imbalanced data.

TABLE V
MAIN RESULTS WITH FORTY PERCENT TRAINING FOR BATCH METHODS.
& 5 w
5 5] 5 = [ :.. . o
= = = = ) 5 ) >
= > 3
I T O I - =T -
Sl e |8 | = 2 | 8 | =
S| Z 2| E|B |2 |32 |28
05 (074 | 0.70 | 0.75 | 0.58 | 0.74 | 0.68 | 0.75 | 0.58
06 | 0.71 | 0.68 | 0.73 | 0.66 | 0.71 | 0.67 | 0.73 | 0.67
07 | 0.71 | 0.68 | 0.74 | 0.64 | 0.71 | 0.66 | 0.74 | 0.64
08 | 0.71 | 0.69 | 0.75 | 0.63 | 0.71 | 0.67 | 0.74 | 0.66
09 | 0.68 | 0.68 | 0.73 | 0.63 | 0.68 | 0.67 | 0.73 | 0.63
10 | 0.67 | 0.67 | 0.72 | 0.58 | 0.66 | 0.65 | 0.72 | 0.60
11 | 0.65 | 0.67 | 0.72 | 0.60 | 0.65 | 0.65 | 0.72 | 0.60
12 | 0.66 | 0.65 | 0.71 | 0.60 | 0.64 | 0.64 | 0.71 | 0.62
J48Under =]
RF-Under
BBCUnder
J48-Over
RF-Over

0.6 0.65 0.7 0.73

Fig. 4. Summarizing results with forty percent training for batch methods.

Table [VI| contains the results for online methods using 40%
of the data for training and 60% to test using the interleaved
test-then-train approach. The best method was ARF with 0.76
of average F-measure (see Figure [5] to summarized results),
roughly 3% better than the RF-Under batch algorithm. LevBag
also achieves satisfactory results with 0.75 of mean and 0.02 of
standard deviation. We notice that KUE, CSARF, and ARFRE
also achieved enough results, respectively 0.74, 0.73, and 0.72
of average F-measure. Nevertheless, besides these methods
being designed to deal with imbalanced datasets, ARF shows
up with an alternative way to DIFOT predictions.



TABLE VI
MAIN RESULTS WITH FORTY PERCENT TRAINING FOR ONLINE METHODS.
&
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£ < Ele|E]% s
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S| 2|z | 2|3 |52 2|8 &

05 [ 071 | 074 | 0.74 | 0.76 | 0.77 | 0.70 | 0.71 | 0.74

06 [ 0.70 | 0.68 | 0.70 | 0.0 | 0.81 | 0.78 | 0.79 | 0.78

07 [ 0.68 | 071 | 071 | 6.75 | 0.76 | 0.71 | 0.73 | 0.74

08 [ 072 [ 072 | 0.72 | 0.76 | 0.7 | 0.73 | 0.73 | 0.75

09070 | 071 | 0.71 [ 0.75 | 0.76 | 0.73 | 0.74 | 0.74

10 [ 0.67 | 0.69 | 0.69 | 0.74 | 0.74 | 071 | 071 | 0.73

11 068 | 071 [ 071 | 0.74 | 075 | 071 | 0.73 | 0.73

12 [ 0.65 | 0.66 | 0.60 | 0.74 | 0.76 | 0.73 | 0.74 | 0.73
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Fig. 5. Summarizing results with forty percent training for online methods.

C. Results for Training with Fifty Percent of Data

In order to verify the impact of more train data for per-
formance classification, we used the holdout validation with
50% of the instances to train the batch methods and 50%
of the samples to test. The results are in Table Similar
results to 40%-60% approach were obtained in this validation
process using 50% of the to train, which RF was the best
classifier, achieving 0.72 of average F-measure, but using the
undersampling technique (see Figure[6|to summarized results).
The NB also achieved enough results with 0.69 of F-measure.
The J48 and BBC performed poorly, with mean F-Measure
results below 0.60.

Again we compare batch methods with online classifiers
using the same parts of the dataset to train and test using the
interleaved test-then-train approach, according to Table
The ARF achieved the best average F-measure value with 0.76
and 0.02 of standard deviation (see Figure [/| to summarized
results), followed by CSARF with 0.75 average F-measure
with 0.02 standard deviation. These results show the robust
performance of tree ensemble-based classifiers. However, Lev-
Bag, KUE, and ARFRE achieved satisfactory results with 0.74,
0.74, and 0.72 of average F-measure, respectively.

TABLE VII
MAIN RESULTS WITH FIFTY PERCENT TRAINING FOR BATCH METHODS.

[=]
g5 | B 5 | 3 e | = 5
] = < = o) g 5 2
= = > >
Els|z 5|28/ |2
S -} 2 = -} 2 =
S| Z 2 | E|B|Z 2|28
06 | 0.72 | 0.58 | 0.72 | 0.57 | 0.72 | 0.61 | 0.67 | 0.57
07 | 071 | 058 | 0.73 | 0.54 | 0.71 | 0.62 | 0.72 | 0.57
08 | 0.72 | 0.58 | 0.74 | 0.56 | 0.72 | 0.61 | 0.73 | 0.57
09 | 0.69 | 055 | 0.72 | 0.52 | 0.70 | 0.59 | 0.70 | 0.55
10 | 0.67 | 0.54 | 0.72 | 0.57 | 0.67 | 0.59 | 0.69 | 0.59
11 | 0.67 | 0.56 | 0.72 | 0.54 | 0.67 | 0.60 | 0.69 | 0.55
12 | 0.66 | 0.56 | 0.69 | 0.55 | 0.66 | 0.60 | 0.66 | 0.59
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BBC-Under
NB.Over
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e
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Fig. 6. Summarizing results with fifty percent training for batch methods.

TABLE VIII
MAIN RESULTS WITH FIFTY PERCENT TRAINING FOR ONLINE METHODS.

= % = [

= = § <3 5 i =
S =) = < ~ &~ wn jo]
S| 2 2| 2|35 |58 | =
06 | 0.72 | 0.70 | 0.67 | 0.77 | 0.80 | 0.77 | 0.80 | 0.76
07 | 073 | 0.71 | 0.71 | 0.74 | 0.77 | 0.71 | 0.72 | 0.73
08 | 073 | 0.72 | 0.70 | 0.74 | 0.76 | 0.73 | 0.74 | 0.74
09 | 071 | 0.70 | 0.68 | 0.74 | 0.76 | 0.71 | 0.74 | 0.73
10 | 0.70 | 0.69 | 0.69 | 0.74 | 0.76 | 0.71 | 0.75 | 0.73
11 | 0.68 | 0.70 | 0.70 | 0.72 | 0.74 | 0.70 | 0.74 | 0.73
12 | 0.70 | 0.65 | 0.68 | 0.73 | 0.75 | 0.72 | 0.76 | 0.73

D. Results for Training with Sixty Percent of Data

In Table are the F-measure results for batch methods
using sixty percent of the dataset to train and forty percent
to test. We notice some decrease in performance for the algo-
rithms experimented compared to other validation approaches
like forty and fifty percent of the dataset for training. The
exception was RF-Over, which achieved 0.71 of the average
F-measure (0.01 of standard deviation) with the best result in
August (mean of 0.73 for F-measure). In addition, according
to Figure [§]it is possible to view outliers in RF-Under and also
J48-Over which indicates instability in tree-based methods
with more data information.
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Fig. 7. Summarizing results with fifty percent training for online methods.

TABLE IX
MAIN RESULTS WITH SIXTY PERCENT TRAINING FOR BATCH METHODS.
St : St
5 7] 5 = I I o o
= = = = by ) 5 >
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07 | 0.69 | 0.54 | 0.66 | 0.39 | 0.69 | 0.56 | 0.71 | 0.47
08 | 071 | 0.49 | 0.71 | 0.53 | 0.71 | 0.59 | 0.73 | 0.50
09 | 0.67 | 0.50 | 0.73 | 0.56 | 0.67 | 0.57 | 0.72 | 0.51
10 | 0.56 | 0.49 | 0.71 | 0.57 | 0.55 | 0.55 | 0.70 | 0.50
11 | 0.37 | 0.50 | 0.70 | 0.56 | 0.35 | 0.56 | 0.71 | 0.50
12 | 026 | 0.55 | 0.71 | 0.47 | 0.26 | 0.56 | 0.69 | 0.47
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Fig. 8. Summarizing results with sixty percent training for batch methods.

We continue our analysis with Table [X] which presents
the main F-measure results for online classifiers using sixty
percent of the dataset for training. The main observation
is about the stable performance with more data differently
of batch methods that decreased the results. The ARF was
maintained as the best learner (0.77 of average F-measure)
followed by CSARF with 0.75 of mean. Another relevant
highlight is the standard deviation smaller than those observed
for batch methods, i.e., 0.01 for all online approaches, except

NB and HT. In addition, using sixty percent to train online
learners methods, only CSARF have outlier results (see Figure
) showing a more stable behavior.

TABLE X
MAIN RESULTS WITH SIXTY PERCENT TRAINING FOR ONLINE METHODS.
)
=

g Bl | 2|8,
S =) = < [~ [~ =)
S| 2| |23 |5 %8| &
07 | 0.72 | 0.71 | 0.66 | 0.74 | 0.77 | 0.72 | 0.75 | 0.74
08 | 0.73 | 0.71 | 0.66 | 0.75 | 0.78 | 0.73 | 0.76 | 0.74
09 | 071 | 0.70 | 0.66 | 0.75 | 0.78 | 0.73 | 0.76 | 0.73
10 | 0.68 | 0.68 | 0.63 | 0.73 | 0.76 | 0.72 | 0.73 | 0.72
11 | 0.67 | 0.67 | 0.64 | 0.73 | 0.76 | 0.72 | 0.75 | 0.72
12 | 0.69 | 0.67 | 0.66 | 0.73 | 0.77 | 0.73 | 0.76 | 0.72

HI

o — T

LEVBAG
ARF <20 o
ARFRE
CSARF . ‘~'~‘.'-
0.65 0.7 0.75

Fig. 9. Summarizing results with sixty percent training for online methods.

E. Feature Importance Analysis

In this work, we are interested in answering the following
question: Considering intrinsic time series in this dataset, are
there feature drifts in its data? We experimented evaluate
the dataset month to month and with different train-test split
percentages. For such evaluation, we used the RF classifier
to measure feature importance according to the MDI metric
in different dataset partitions. We notice that besides the
timespan characteristics, there are no feature drifts in the
DIFOT database. In general, the feature importance ranking
suffers only a few changes, and three of them remain in the
top for all approaches and the end of the ranking by shifting
between periods or splits. However, the robust results reported
using online learners show the relevance of these approaches
to deal with DIFOT comparing to traditional batch methods.
We believe that this finding is related to the less important
characteristics, that is, although there is no change in the best
attributes, in a few months (e.g. February and March) certain
dimensions (feature forty) lose relevance and this scenario can
be better adapted through online methods.



VI. CONCLUSION AND PERSPECTIVES

In this work was presented a brief literature review of
batch and online classification barely related to Supply Chain
Management. More specifically, we were interested in com-
paring these approaches applied to DIFOT prediction using a
dataset proposed for this end. The public DIFOT dataset is
expected to support extensible researches in supply chain and
machine learning, mainly for data stream mining considering
the scarcity of this type of real data. We benchmark several
portion of the DIFOT dataset evaluating the results equally
among batch and online learners with a robust hyper-parameter
tuning. The results obtained using data stream classifiers were
inspiring for future research in DIFOT prediction, mainly
using tree-based ensemble adaptive approach like ARF and its
improved precursors. We do not detect feature drifts using the
holdout validation method with month to month or percentages
of the dataset. Considering these discoveries, we plan to
continue researching online classification methods according
to recent studies such as deep learning [[17], [[18] and rough
sets theory [22]. In addition, methods to detect feature drift
could enrich the scientific community focused in supply chain.
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