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ABSTRACT

Data stream mining targets the learning of predictive models that
evolve over time according to changes in arriving data. Throughout
the years, several approaches have been tailored to create and con-
tinuously update predictive models from these streams, and from
these, Hoeffding Trees became a popular choice for learning deci-
sion trees from data streams. In this paper, we aim at quantifying
and expressing the importance of features in dynamic scenarios
is of the utmost importance as they allow domain experts to back
up, or invalidate, a predictive model. Therefore, we propose and
assess a positional gain method tailored for for both individual
and ensembles of Hoeffding Trees and how these behave in both
synthetic and real-world scenarios.
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1 INTRODUCTION

Most of computational systems nowadays must process data that ar-
rives sequentially over time, in the form of a potentially unbounded
data stream. Yet, it is widely observed that the dimensionality of
streams are also growing. High-dimensional data brings forward
serious problems to learning algorithms, as data sparsity negatively
impacts the (i) accuracy of the predictive model as the learners
are prone to overfitting, (ii) complexity of the predictive model,
and (iii) processing times of the model as a consequence of (ii).
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Therefore, it becomes of importance to score and rank features to
identify which are important from the entire feature set.

In this paper, we propose the use of decision trees to score and
rank features during the processing of data streams. In contrast
to existing proposals for ranking features from data streams in
classification tasks, decision trees allow the identification of high-
order interactions between features. Our proposal is to traverse
the internal structure of decision trees to rank features according
to their position in the internal structure and their goodness-of-
fit at the moment of split. Furthermore, the feature ranks can be
extracted from either single trees or ensembles.

2 PROBLEM STATEMENT

Let S denote a data stream providing instances in the (X!, y") form,
where ¥ is a d-dimensional vector of values belonging to a feature
set X that is possibly numerical, categorical, ordinal, or most likely
mixed; and y’ € Y its corresponding class label. Throughout this
work, we denote the i-th feature of a data stream as X; € X.

The goal in data stream classification is fit and update a predictive
model f : X — Y over time. Formally, a concept C is given by a
probability distribution P[X, Y] [9]. Since the data distribution is
ephemeral, we denote P;[X, Y] to be the concept at a timestamp ¢,
while P[; ,,1[X, Y] is the concept at a time period [t, u]. A concept
drift occurs between instants ¢t and u if P;[X, Y] # P,[X, Y] holds,
and similarly for time periods [t,u] and [v, w] if P[; ,,1[X, Y] #
Py, w][X, Y]. In this paper, we target one specific type of concept
drift, called feature drift 1], which occurs when a subset of features
becomes, or ceases to be, relevant to the learning task.

3 RELATED WORK

Focusing on the classification task for data streams, we highlight
the Hoeffding Tree [5]. The definition of which attribute X; € X
is used in a Hoeffding Tree split node is given by comparing all
available features and choosing the best according to an heuristic
function J, e.g. gini index, conditional entropy, information gain,
and symmetrical uncertainty. As traditional decision trees, the Ho-
effding Tree continuously selects features for its branches according
to the arrival of data. The traditional Hoeffding Tree assumes that
the data generator process is stationary, and thus, it only grows
over time. Consequently, authors in [3] proposed the Hoeffding
Adaptive Tree, which uses a drift detector inside decision nodes
to monitor the internal error rates of the tree, thus, continuously
selecting features and building its predictive model over time.



In contrast to feature selection, feature scoring - the focus of this
paper - associates to each feature a score that determines how ‘im-
portant’ each feature is w.r.t. class prediction. Recently, authors in
[2] proposed a dynamic weighting scheme for the problem of classi-
fication over data streams. In practice, the weighting process relies
on a flat evaluation of features according to a feature importance
function I(-).

4 PROPOSAL

In this section we propose a scheme to quantify the importance of
features according to their use in Hoeffding Trees. Quantifying and
expressing the importance of features in dynamic scenarios is of
the utmost importance since they allow domain experts to back up,
or invalidate, a predictive model.

The rationale behind our proposal is to take into account the (i)
position in which a feature is used in the tree internal structure, and
(ii) the goodness-of-fit of the same feature computed during the time
of the split. This proposal is similar to the Mean Decrease Impurity
(MDI), in which the final feature importance I(X;),VX; € X is
calculated as the sum of the heuristic values J(-) computed at the
time of the split proportionally to the number of samples it splits, as
this sum iterates over all trees in the case of an ensemble. The MDI is
given by Equation 1, where t; is an arbitrary tree inside the ensemble
oftrees T = {t1,12,...,tg}, Ny is the number of instances observed
in a split node b, N is the total number of samples observed in the
entire tree, J(b) is the heuristic value (goodness-of-fit) computed
during the split process of b, and Q(b) is the function that returns
the feature X; € X used in b.
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The main drawback of using MDI in Hoeffding Trees resides
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in the % component, since N; is the grace period parameter and
is approximately the same value across all split nodes, while N
continuously grows as new data becomes available. Consequently,
this component will equally penalize all features regardless of their
position inside the tree structures. This behavior is different from
the one observed in traditional decision trees, where the proportion
% is larger on the superior nodes and decreases as we traverse the
tree structure and reach the leaves. We propose a slightly different
approach to quantify the importance of a feature X; inside a tree-
based model. We replace the % component by another ratio that
takes into account the position of a node b inside the tree structure
w.r.t. the entire tree depth. We name it the ‘Mean Positional Gain’
(MPG), as the importance of a feature X; is given by Equation 2,
where y(#;) is the function that returns the number of split nodes
in atree t; € T, h(t;) is the tree height, h(b, t;) is the tree depth of a
split node b in t;, and R is the maximum value of the heuristic J.

I(X;) = MPG(X;) =
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In practice, the term %

guarantees that split nodes
closer to the leaves of a tree possess smaller importance rates com-
pared to those observed closer to the tree root. Another small dif-
ference introduced in Equation 2 compared to Equation 1 is that
the heuristic function value J(b) is normalized in the [0; 1] interval.

5 ANALYSIS

In this section, we apply the proposed feature scoring scheme on
Hoeffding Trees [5], Hoeffding Adaptive Trees [3], and the Adap-
tive Random Forest [6] on both synthetic and real-world data. All
experiments were conducted in the Massive Online Analysis (MOA)
framework [4]. The synthetic experiments contain 500,000 instances
and 200 features, with 2 gradual and equally spaced drifts [1], i.e.
occur at 166,666 and 333,333 instances, each with a width of 10,000
instances. The Binary Generator (BG1) [7] is used to synthesize a
stream where only 3 out of the 200 available features are relevant
for predicting the class y; whereas in the SEA generator [8] as only 2
out of the 200 numeric features are relevant. In the BG1 experiment,
features attrib0, atiribl, and atirib2; attrib10, attrib20, and attrib50;
and attrib10, attrib25, and attrib30 are relevant during each of the
concepts we have in the stream. Similarly, features attrib64 and
attrib113; attrib6 and attrib87; and attrib29 attrib131 are relevant
during each of the 3 concepts for the SEA experiment.

In Figure 1 we report the tree depth and feature importance
scores obtained during the BG1 experiment. Focusing on the fea-
ture importances, we see in Figures 1 (b), (c), and (d) that the correct
features are highlighted, with the exception of attrib30. This is ex-
plained by the fact that online decision trees are learned using
samples of the data, and thus, if the sample that the tree uses to
decide on which feature it should split on is skewed it may select
an ‘innapropriate’ feature. Similarly, the results for the SEA experi-
ment are given in Figure 2, where all learners are able to correctly
highlighting the relevant features.

In this section, we report the feature importance scores obtained
in the AIRLINES dataset which was obtained from the MOA dataset
repository!. As we note on the Figure 3 (b), there are two features
(“AirportFrom” and “AirportTo”) that are highlighted. On Figure 3
(d), the same features are highlighted with more peaks of feature
importance. On Figure 3 (c), only “AirportFrom” and “AirportTo”
are highlighted. We note on Figure 3 (c) that “AirportTo” feature
importance rate is higher when “AirportFrom” is lower. In practice,
what happens here is that the Hoeffding Adaptive Tree is continu-
ously signaling drifts, and thus, the tree branches are being reset
and relearned (see Figure 3 (e) for tree depth).

6 CONCLUSION

In this paper, we propose a feature ranking function to quantify
the importance of features according to their usage in Hoeffding
Tree-based classifiers. This scheme is able to depict high-order
interactions between features, a gap observed in the existing works
of the area [2]. As future works, we plan to use the scores obtained
by our proposed schemes as the core of novel feature selection
algorithms, and try to extend the work of [2], where the feature
importance scores obtained here can be used inside other learning
schemes, such as bayesian and instance-based learners.

1The MOA dataset repository can be found at https://moa.cms.waikato.ac.nz/datasets/
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Figure 1: Results obtained in the BG1 experiment.
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Figure 3: Results obtained in the AIR experiment.
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