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ABSTRACT

Data streams are prone to various forms of concept drift
over time including, for instance, changes to the relevance
of features. This specific kind of drift is known as feature
drift and requires techniques tailored not only to determine
which features are the most important but also to take ad-
vantage of them. Feature selection has been studied and
shown to improve classifier performance in standard batch
data mining, yet it is mostly unexplored in data stream min-
ing. This paper presents a novel method of feature subset se-
lection specialized for dealing with the occurrence of feature
drifts called Iterative Subset Selection (ISS), which splits the
feature selection process into two stages by first ranking the
features using some scoring function, and then iteratively se-
lecting feature subsets using this ranking. This work further
extends upon our prior work by exploring feeding informa-
tion from the subset selection stage back into the ranking
process. Applying our method to the Naive Bayes and k-
Nearest Neighbour classifier, we obtain compelling accuracy
improvements when compared to existing works.
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1. INTRODUCTION

Nowadays, many information systems are fed with poten-
tially infinite and continuously generated sequential data.
Examples of streaming data include posts on social me-
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dia, data generated by wearable gadgets, and stock mar-
ket trades. Motivated by these and several other applica-
tions, the data mining community has shifted its attention
to streaming scenarios, where novel techniques are proposed
every year. Many of the current developments tackle the
transient characteristics of data streams, i.e., often the un-
derlying function that maps instances to classes changes over
time, thus giving rise to a phenomenon called concept drift.

In this paper, we focus on a specific kind of concept drift:
feature drift. A feature drift occurs whenever a feature be-
comes, or ceases to be, relevant to class determination. Re-
cent studies on this topic [6, 7, 4] have shown that the num-
ber of techniques that can dynamically determine which fea-
tures are the most important over time, and that can also
take advantage of this information, is rather small currently.

We introduce a novel method for feature selection called
Iterative Subset Selection (ISS), which seeks to deal with
such feature drifting scenarios. Our proposal is an embedded
feature selection method, where the feature selection process
is a part of the classification model construction process. We
evaluate the effectiveness of ISS at addressing the effects of
drift with two well known and widely used classifiers: k-
Nearest Neighbours and Naive Bayes. Additionally, we also
evaluate our proposed algorithm against existing works on
the topic, highlighting its effectiveness and efficiency.

This paper is an extended version of a work previously pre-
sented at the SAC 2018 conference in Pau, France [27]. We
expand upon the previous work by investigating the algo-
rithm’s ability to correctly select the true number of relevant
features. We also introduce and exploring a new method of
feature ranking which utilizes information from the classifi-
cation model.

This work is structured as follows: Section 2 introduces the
task of data stream classification, while Section 3 details
the type of drift we wish to tackle: feature drifts. Section
4 surveys related works on feature drift adaptation, which
are later used during the empirical analysis. Section 5 intro-
duces and details our proposed algorithm. Section 6 contains
our extension to the previously presented work and discusses
a new ranking method. Our assessment of the algorithm is
presented in Section 7. Finally, Sections 8 and 9 provides
directions for future work and the conclusions drawn, re-
spectively.
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2. DATA STREAM CLASSIFICATION

Learning from ephemeral sequences of data comprises all
the problems of conventional batch learning including miss-
ing values, noise, class imbalance, and sparsity. On top of
that, it introduces further difficulties such as single-pass pro-
cessing, limited computational resources, and concept drifts
[17].

In this paper we focus on the classification task, which re-
gards learning and updating predictive models over time.
Let S denote a data stream providing instances in the i* =
(#*,y") form, where t is its arrival time stamp, #* is a vec-
tor of features from the entire feature set X and y* € Y its
class. To denote the i‘" feature of an instance #*, we will use
the X; notation, while Z¢ denotes the value of this feature
for an instance z*, where ¢t is dropped if unnecessary. Our
ultimate goal in classification is to learn and update a model
h: X — Y over time, upon the arrival of instances from S.

In streaming scenarios, instances are processed sequentially
by the classifier as they arrive, and discarded after pro-
cessing. Although there is no restriction against buffering
and processing instances periodically, this must not jeopar-
dize computational resources. This is important since main
memory is finite and its usage must be optimized so that
classifiers and their buffers fit into this limited space. Pro-
cessing time per instance must also be limited. If not, arriv-
ing instances will be enqueued until the system crashes due
to the lack of memory. Lastly, since data streams are inher-
ently temporal, they are also expected to be ephemeral: the
underlying function mapping instances to classes is likely to
change, thus giving rise to a phenomenon named concept
drift [23].

3. FEATURE DRIFT

As described in the seminal work of Widmer [23], data streams
are susceptible to different types of drifts, including: (i)
changes in the characteristic feature values, (ii) evolution
of the value domains of features over time, (iii) features that
were once important and that now may become meaningless
or the other way around, and so on. In this paper, we tackle
the above-emphasized type of drift, called feature drift. A
feature drift occurs when a subset of features becomes, or
ceases to be, relevant to the learning task [6].

To formalize feature drifts, we must first be able to discern
between relevant and irrelevant features [29]. Given the en-
tire feature set X, and subsets S; = X\ {X;}, then a feature
X is relevant iff Definition 1 holds; otherwise, it is said to
be irrelevant.

Definition 1. A feature X; is relevant iff 3S; C S;, such
that P[Y|X;, Si] > P[Y]S;] holds.

Following the previous definition, if an arbitrary relevant fea-
ture is removed, then it will result in a reduction of overall
prediction power, because (i) it alone is strongly correlated
with the class, or (ii) it forms a feature subset with other
features that together are correlated with the class (this con-
cept is commonly referred as feature interaction [18]).

A feature drift occurs whenever a subset of features becomes,
or ceases to be, relevant to class prediction. Given X at a
timestamp ¢, we are able to select the ground-truth relevant
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features X* C X such that VX; € X Definition 1 holds and
VX; € X \ X* the same condition does not. A feature drift
then occurs if, at a timespan between t; and t; = ¢t; + A, X~*
at t; differs from X* at ¢;.

Like other types of drift, changes in the relevant subset of
features X ™ affect the ground-truth decision boundary. Ide-
ally, we expect classification models to detect and adapt
to changes in X ™, while changes may be (i) radical, where
the classifier would forget its entire model and learn from
scratch; or (ii) more slowly paced, where its model would be
gradually updated given drifts [21].

4. RELATED WORK

Determining which features are relevant has been widely dis-
cussed in batch learning. However, the same cannot be said
about learning in streaming environments. Recently, the
surveys of [5, 6] highlighted that there are few works that
explicitly tackle the problem of drifting features, and these
basically consist of decision trees [13], rule learning [3] and
ensembles [2, 21]. Furthermore, [6] provides a comprehen-
sive evaluation of some stream classifiers, concluding that a
single adaptive decision tree, namely the Hoeffding Adap-
tive Tree (HAT) [9], was the best performing classifier over
all w.r.t. the trade-off between classification rate, process-
ing time and memory usage. The HAT is an extension to
the incremental Very Fast Decision Tree classifier [13], which
uses the ADWIN drift detector [8] inside decision nodes to
monitor the internal error rates of the tree. If a feature that
is being used by a decision node becomes irrelevant, one
would expect the error rate to increase, and ADWIN will
flag a change. Consequently, the affected decision node will
reset the entire sub-tree, replace the irrelevant split with a
better one, potentially identifying and selecting a newly rel-
evant attribute, and restart growing a new sub-tree. This
allows the HAT classifier to detect and overcome feature
drifts quickly and effectively.

More recently, the authors of [7] proposed a dynamic weight-
ing scheme for the problem of classification over data streams.
In that work, the estimation of the discriminative power of
each feature is updated using a sliding window approach.
Feature evaluation was performed using the Symmetrical
Uncertainty scoring operator. The discriminative power of
each feature was used as a weighting factor in the predic-
tion process of both k-Nearest Neighbours and Naive Bayes
classifiers, which resulted in useful accuracy gains, at the ex-
pense of a reasonable amount of additional processing time
and memory usage. The same authors proposed in [4] the
use of the same incremental operators for performing actual
feature selection with a method called DISCUSS. The re-
sults obtained show that DISCUSS is able to improve kNN
and Naive Bayes learners in scenarios where the relation-
ship between features and the class are mild, meaning that
no higher-order interactions exist.

An algorithm called INTERACT, similar to our proposed
method, has been proposed in [28]. The main differences
between ISS compared to INTERACT are that ISS wraps
around and embeds the feature selection process into the
classifier to select feature subsets and that ISS is incremen-
tal.

21



Finally, it is worth mentioning that feature drifts have also
been recently investigated in the context of regression, such
as in the work of [14]. However, regression is outside the
scope of the work presented here.

5. ITERATIVE SUBSET SELECTION

A naive brute force approach to the problem of identifying
irrelevant features in a stream would be: “for every new in-
stance arriving in the stream, exhaustively search through
every possible subset of features, evaluate each of these sub-
sets using some goodness of fit criterion, and select the fea-
tures of the best performing subset”. Such an algorithm
can implicitly deal with changes in feature relevance as the
classification for each example is independent. In practice,
however, such an algorithm would be unfeasible as it would
be extremely inefficient and prohibitively expensive, regard-
less of working in a batch or in a streaming setting.

Our proposed method improves upon this naive approach:
features are first ranked using a scoring function, based on
the existing batch feature selection method called ESFS [15,
25]. By doing this, only a limited linear number of subsets is
evaluated. We embed the method into the classifier and use
it directly as our goodness criterion. Sections 5.1 and 5.2
detail the ranking and subset selection steps, while Sections
5.3 and 5.4 show how these steps are embedded within kNN
and Naive Bayes, respectively.

5.1 Ranking

Algorithm 1 shows the pseudocode for the ranking of fea-
tures. Initially, the relevance of each feature is determined
by individually and independently evaluating the feature
w.r.t. class prediction, using some scoring function. Fea-
tures are sorted by their discriminating power using the
score, allowing for irrelevant features to be filtered out; only
the top f number of features (where f is a parameter) are
kept for use in the next stage of subset selection, whereas
features below the top f ranks are ignored. In general, it is
recommended to set f to cover most, if not all features in
the stream, so the method is able to adapt to drastic drifts.
Smaller f values reduce the search space and can be used if
there exists knowledge of the nature of features in the data
stream before evaluation. Rankings are recomputed period-
ically every r instances to reduce computational load, using
a sliding window of instances, resulting in each ranking be-
ing independent. Thus the method is able to implicitly deal
with drift as only new instances in the window are used.

The use of prior knowledge was also explored in using in-
formation from the subset selection stage to scale the scores
generated by the ranking function. This is discussed in more
detail later in Section 6. The three ranking functions used in
this work are the Average Euclidean Distance, Information
Gain, and Symmetric Uncertainty [24].

Average Euclidean Distance (AED) is a simple rank-
ing function based on the idea that after normalization, fea-
tures which have the most influence on the decision of the
class value will be on average further apart when plotted in
FEuclidean space. For example, for the problem of identify-
ing the gender of adult Mallard ducks we would expect the
colour of a duck’s head hair to on average be far apart be-
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Algorithm 1 Ranking of features

Input:

W: Window of Stream instances

R: Scoring function

Output:

r: List of features sorted by best to worst score
1: function RANKFEATURES(W,R)
2 S+ 0
3 for all Feature f in W do
4 for all Instance w € W do
5: Sy <+ Sy + R(wy)

6: end for
7 end for

8 Sort(S)

9 return S

10: end function

tween male duck examples and female duck examples when
plotted in euclidean space, as only male ducks grow green
head hair baring genetic defects. For another feature, say
the size of the duck, we would expect there to be on average
less distance between adult males and females as a wider
variety of factors can influence the size of the duck other
than the gender, such as nutrition, environment, or genet-
ics; whereas gender is the sole determinant for whether a
adult Mallard duck grows green head hair. The calculation
of AED is different depending on whether an attribute is
nominal or numeric, while not requiring discretization as
the other ranking functions. The numeric formula of AED
is given in Equation 1, where X; is a numeric attribute in a
stream with L classes, N.(X;) is the number of times that
the class value ¢ appeared in the window with a valid value
for X, where MV is the mean value given by Equation 2,
and X2 is the value of X for the n-th instance with a class
value of c.

AEDnum (X;) = > (MV(X.) - MV(X;)® (1)
1 Ne(X)
MV(X,) = N (%) > Xt (2)

The AED formula for a nominal attribute is defined by
Equation 3, where X, is a nominal attribute with V cat-
egories in a stream with L number of known classes, X, is
the number of instances with a c-th class label and variable
value v, and C.(X;) is the total number of instances with a
label ¢ with a valid (non-missing) value for X;.

1 4 X Xjv 2
ABDn(Xi)= ¥ |3 % (7043?0_7%(]&») (3)

0<c<j<L

Information Gain (IG), a synonym for the Kullback-
Leibler divergence [19], is a widely used measure in machine
learning and data mining. It measures the reduction of en-
tropy by the introduction of a variable. As it is only pos-
sible to calculate Information Gain for nominal attributes,
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discretization is required for numeric attributes. The dis-
cretization algorithm used in this work was PiD [16], a single
pass discretization algorithm specialized for data streams.
The formula used to calculate IG for an attribute X; and a
class attribute Y is defined as follows:

IG(Y|X,) = H(Y) — H(Y|X)) (4)

where H(X;) is the entropy for an attribute X; with N dis-
tinct values is given by the following formula:

H(X;) =Y —P(X; = z;)log P(X; = ;) (5)

j=0

and H(Y|X;) is the conditional entropy, given by:

H(Y|X:) =Y plz;)H(Y|X; = ) (6)

=0

Symmetric Uncertainty (SU) is a normalized version of
Information Gain, and has been shown to give good perfor-
mance for feature selection [26]. Its main advantage over
Information Gain is that it overcomes the bias in the data
(when there is significantly more or less of some class/classes
than others). Again, Symmetric Uncertainty can only be
calculated for nominal attributes, and thus, discretization is
required for numeric attributes. The formula for Symmetric
Uncertainty for an attribute X with the class attribute Y is
is defined as follows:

SU(X,Y) = % 7)

5.2 Subset Selection

As streaming environments require algorithms to be fast,
so to keep up with the stream, an exhaustive search of all
combinations like the one mentioned in the aforementioned
naive method is out of the question. Therefore, we utilize the
ranking to reduce the search space and Backward Feature
Elimination [24] to select the best feature subset. As a con-
sequence, we limit the search to a maximum of f iterations,
meaning that the growth of the number of evaluations is
linear in f rather than exponential, thus also avoiding a po-
tential combinatorial explosion. Backward Elimination is se-
lected over Forward Selection due to its potential for a slight
optimisation for the k-Nearest Neighbour classifier while giv-
ing the same results. This is discussed in more detail in
Section 5.3. Initially, a subset S that contains all f ranked
features is evaluated and its prediction result recorded. The
lowest ranked features are iteratively removed from S, and
the new smaller S is re-evaluated until S is empty. The
best subset is selected based on an estimate of the accuracy
achieved by each of the subsets by maintaining counts of the
number of times a subset correctly predicts the class when
the classifier uses only features in the given subset. These
counts are fuzzy counts as they are subject to a decay factor
d to allow for implicit adaptation to change. Counts are tied
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Algorithm 2 k-Nearest Neighbours Classifier Subset Selec-
tion

Input:

a: Array of accuracy estimates for each subset size

h: Size of Hill climbing window

b: Size of previous best subset

f: Upper bound of subset size

r: List of ranked features sorted descending from most rel-
evant to least relevant

Output:

q: Final classification result after feature selection

b: Size of new best subset

1: function SELECTSUBSETKNN(a,h,b,f,r)
2 l+<b—hl>1 > Lower bound of subset size
3 u—b+husf > Upper bound of subset size
4: for i from 1 to u do
5: S <« r[i] > fill S with ranked features
6: end for
7 for i from u to [ do
8: p < kNN classification result using only features
in §
9: Update a[size(S)]
10: S« S—r[i] > Remove bottom ranked feature
from S
11: if i = b then
12: g p
13: end if
14: end for
15: b < index of max(a) > Set new best subset size

16: return g, b > b is used for the next iteration of
subset selection

17: end function

to the size of the subset rather than the composition of the
subset, similar to how counts are kept in the Space Saving
Algorithm [20], thus reducing memory usage and complex-
ity. The accuracy estimate for a subset S is computed using
the simple formula of #iootilc‘;rz;tpf;;?;fggzswvxﬁhss and the fi-
nal prediction of the classifier selected is based on the subset
with the current best estimate. While only the final predic-
tion is output, counts are updated for all subsets. The decay
factor of the counts is a user-given parameter d and is ap-
plied at fix intervals 1.

5.3 k-Nearest Neighbours Classifier

k-Nearest Neighbours (kNN) was one of the classifiers we
explored. The implementation of the ISS subset selection
for kNN is shown in Algorithm 2.

kNN classifies the target instance based on a majority vote
by its k nearest neighbors’ class values. Euclidean distance
is often selected as the distance measure due to its simplic-
ity. The cumulative nature of Squared Euclidean distance
also allows for easy maintenance of distances for each in-
stance in the window. The kNN classifier itself can utilize
a slight optimisation from backward elimination using the
knowledge that the Euclidean distance between the target
instance and instances in the sliding window are normalized.
Due to normalization, the absolute difference in squared Eu-
clidean distance for each new feature added or taken away
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is bounded between 0 and 1, meaning we can separate in-
stances into 3 subsets: (i) set A where instances’ distances
are updated and the instances used in kNN evaluation, (ii)
set B where instances’ distances are kept up to date but
the instances are ignored in kNN evaluation; and (iii) set C
where instances are ignored entirely and their distances not
kept up to date. Instances are able to move between A and
B freely, and from B to C', with instances unable to leave C'
once they enter. Initially all instances begin in A. For a tar-
get instance s, and a window S, we define d; as the distance
between s, and some s; € S. dj is the distance of the cur-
rent k-th nearest neighbour. We calculate n; = [d; —di — 1]
for s; € S, the minimum number of features that need to be
removed for s; to be closer to s, than si, under the naive
assumption of the best case that d; decreases by the max-
imum of 1, and that all other d € D remains the same. If
n; > 0, then we can safely ignore s; for the next n; iterations
as it is impossible for s; to be closer to s, than s; until at
least n; features are considered. s; in this case moves from
A to B and is unable to return to A the next n; iterations
of subset selection. Instances in B still need their distances
kept up to date as after n; iterations, s; may rejoin A and
n; is recomputed again, with the algorithm repeating until
all f subsets have been explored.

After f/2 total evaluations, it becomes possible to eliminate
instances from further search as it becomes impossible for
si to return to A from B if n; is greater than the number of
iterations left (1). In this case, s; would move B to C if n; >
[, thus eliminating s; from any further distance updating as
it will no longer be evaluated. Forward selection would not
allow for this optimisation to the same degree as all distances
would initially start between 0 and 1 for the initial subset
of only the top-ranked feature, meaning it is not possible to
determine which instances can be placed into B initially.

Despite this and other optimisations, it was found that search-
ing through every subset size for data streams is still gen-
erally computationally prohibitive, as streams are prone to
dramatic drifts and may have a large number of features,
which subsequently requires a large f parameter to be able
to adapt to change. While the ranking is iterative and com-
putationally inexpensive, the sets A and B are still poten-
tially very large even after several iterations of subset se-
lection. In the worst case, subset selection runs the kNN
search algorithm f times for every new instance, which re-
sults in a complexity of O(kfw) where w is the size of the
window containing the instances, and k is the number of
nearest neighbours.

To alleviate this problem, the simple algorithm of Hill Climb-
ing is utilized in a novel way to select the subset size and
limit the number of subsets evaluated. Hill Climbing is a
naive greedy local search algorithm which incrementally and
greedily selects the best solution from the search frontier.
While Hill Climbing is known to be prone to becoming stuck
in local optima, the occurrence of local optima is found to be
mitigated by first initially sorting the features in the ranking
stage, so long as the ranking function can sort relevant fea-
tures above irrelevant features. Instead of searching across
all subset sizes from 1 to f, the search frontier is limited
by only evaluating subsets with a difference in a number
of features of at most +h around the selected subset size
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from the previous prediction, with h being the hill climb
window which controls the number of subset sizes searched
around the previously selected size. The complexity of the
kNN search is therefore bounded by O(kw(2h + 1)), which
allows experiments to complete in reasonable time. It was
found that Hill Climbing caused a very negligible decrease
(less than 1%) in overall accuracy compared to a static f
comprising all features in the stream due to slightly worse
initial accuracy, as the algorithm needs time to “climb”.

5.4 Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic classifier that de-
termines its classification result using Bayes’ theorem while
making a strong (naive) independence assumption between
each of the features in a stream, given the class value. ISS
works well with the Naive Bayes classifier as Bayesian prob-
ability is cumulative when features are assumed to be inde-
pendent. This means that the next smaller feature subset is
easily and cheaply computed by removing the probabilities
of the least desirable feature from the current total prob-
abilities. As a result, the Naive Bayes classifier does not
face the same performance limitations that the kNN classi-
fier does. Therefore, heuristic search, such as hill climbing,
is not required to ensure reasonable run-times, even for large
f. The implementation of ISS subset selection for the Naive
Bayes classifier is shown in Algorithm 3. A point to note is
the necessity for the algorithm to maintain a separate slid-
ing window for ranking as unlike the kNN classifier, the NB
classifier does not use sliding windows by default.

6. UTILIZING ACCURACY DIFFERENCE
BETWEEN SUBSETS

In the previously presented paper, a perceived improvement
mentioned in the future works section was to utilize informa-
tion from the subset selection stage in some manner. Cur-
rently, the ranking stage starts from scratch every time and
does not utilize any information from the subset selection
stage, or any prior knowledge for that matter. To explore
ways to exploit this information, we looked at using the dif-
ference between the accuracy estimate of each subset to scale
the ranking score. As each subset maintains its own accu-
racy estimate, we can easily obtain the change in the accu-
racy estimate caused by the iterative removal of a feature f
from the subset by comparing the accuracy estimate of the
subset containing f to the subset without f. We make the
assumption that classification accuracy is expected to de-
crease for relevant features when removed from the subset,
with the opposite happening for irrelevant features. As such,
we attempt to penalize or reward features based on whether
they decrease or increase the accuracy estimate when re-
moved from the feature subset used for classification. We
refer to this ranking as Accuracy Difference Scaled Ranking
(ADSR). Algorithm 4 shows the pseudo-code of the ADSR
ranking function. Given accuracy estimates of the subset
sizes as features are iteratively removed A, and i the size of
the subset for which has f as the lowest ranked feature, we
define the accuracy difference dy as A; — A;—1). We feed
this accuracy difference back into the ranking function by
multiplying the ranking score by a scalar determined by the
accuracy difference. A simple scalar of ¢ (1 —dy) * R(f) is
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Algorithm 3 Naive Bayes Classifier Subset Selection

Algorithm 4 Accuracy difference scaled ranking function

Input:

a: Array of accuracy estimates for each subset size

w: Ranking window

b: Size of previous best subset

f: Upper bound of subset size

r: List of ranked features sorted descending from most rel-

evant to least relevant

Output:

q: Final classification result after feature selection

b: Size of new best subset

1: function SELECTSUBSETNB(a,b,w,f,r)

2: for ¢ from 1 to f do

3: S+ S+r[i > Fill S with ranked features

4: end for

5 for i from f to 1 do

6: p < NB classification result using only features
in S

7 Update a[size(S)]

8: S« S—r[i] > Remove bottom ranked feature
from S

9: if ¢ = b then

10: q<p

11: end if

12: end for

13: add instance to w

14: while w’s size > w’s max capacity do

15: Remove oldest instance in w

16: end while

17: b + index of max(a) > Set new best subset size

18: return ¢, b > b is used for the next iteration of
subset selection

19: end function

used, where R is the ranking function, and c is a user defined
scalar. As the accuracy difference is always bound between
-1 and 1, the magnitude of the scaling is at most 2c.

A user-given confidence threshold ¢ is used to adjust to noise,
with the scaling only occurring if |ds| > ¢. We also explored
only penalize features without rewarding features with a
dy < 0.

7. EVALUATION

In this section, we compare the average accuracy obtained
by classifiers, their processing time, and the memory (RAM-
Hours) required to process each of the tested data streams.

Experiments were conducted using the Massive Online Anal-
ysis (MOA) framework [10]. A large combination of ISS’
parameter configurations were explored for both the kNN
and NB classifiers. The parameters explored were: the in-
terval at which decay occurs for the accuracy counts ¢ (500,
1000, and 1500 were tested), the decay factor of the accu-
racy counts d (0.05, 0.1, 0.15, 0.2, and 0.25 were tested), the
window size used by ranking functions w (500, 1000, and
1500 were tested), and the interval at which ranking occurs
r (500, 1000, and 1500 were tested). The number of ranked
features f was set to encompass all features in the stream.
ADSR was not utilized to scale ranking scores except for
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Input:

W: Window of Stream instances

R: Scoring function

D: Array of accuracy estimate difference from removing
each feature to the subset

c: Scalar

o: Penalize only indicator

t: Confidence threshold

Output:

r: List of ranked features sorted descending from most rel-
evant to least relevant

1: function RANKACCURACYDIFFERENCE(W ,D,R,c,0,t)

2 S < RankFeatures(W, R)

3 for all Feature f € W do

4 if |Dy| > t then

5: if o =false or (0o = true and Dy > 0) then
6: Sy« Sp*(1—Dy)xc
7 else

8 end if

9: end if

10: end for

11: Sort(S)

12: return S

13: end function

the experiments mentioned in Section 7.4. The kNN with
ISS specific hill climb window size h parameter, which con-
trols the number of subsets searched around the current best
size, was also explored with sizes of 2, 4 and 6. The source
files of the experiments conducted can be found online at
https://github.com/EMPaThy789/ISS-MOA.

Since accessibility to real-world data streams was limited,
artificially generated data streams were used in their steed.
We employed the following stream generator which feature
gradual feature drift: AGRAWAL [1], Assets [7], BG [5],
LED [10] and SEA [6, 22]. Sudden feature drift was tested
using a custom made generator for this work called the Con-
ditional Generator [27]; it is available in the project reposi-
tory.

The Conditional generator generates classes with certain at-
tributes associated with each class. Each attribute associ-
ated with a class has either some valid range or some set
of possible values specified, depending on whether the at-
tribute is numeric or nominal. Each instance is generated
by first generating a class, and then randomly re-setting the
associated attributes to valid ranges for that class. Drift
are introduced by re-associating attributes and their valid
ranges. The streams generated using this generator were:
Conditional, FY A, FY B, FY C, and FY D, with each
stream increasing in complexity. The number of features
relevant to the classification problem out of all features for
each stream is shown in Table 1. The first three columns of
the table show the number of feature relevant to the classifi-
cation problem for each stream concept, and the last column
shows the total number of features in each stream. FY A
and FY B both feature no drift and were repeated as sep-
arate streams to encompass feature drifts, and are referred
to as FY A drift and FY B drift.
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Figure 1: Time series plots for experiments’ accuracy
(%) against stream instances.

Each experiment consisted of running the classifier on a gen-
erated data stream capped at 500,000 instances of data.
Points for feature drift were set at every 200,000 instances
for all feature drifting streams, except the LED, FY A drift,
FY B drift, and FY C, where only a single drift occurs after
250,000 instances.

A large number of classifier parameters were tested and are
broadly discussed in this section. We focus our analysis on
a default parameter configuration featuring a window size
w of 1000, a ranking interval r of 500, a decay rate d of
0.1, a decay interval ¢ of 1000. This particular configuration
was selected based on the trade-off between accuracy and
computational resources. A hill climbing window h of 4
was selected as the default for experiments using the kNN
classifier.

Finally, statistical significance across methods is verified us-
ing Wilcoxon’s test, or a combination of Friedman and Ne-
menyi’s tests depending on the number of methods com-
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Figure 2: Time series plots for experiments’ accuracy
(%) against stream instances continued. Refer to 1 for
legend.

pared [12]. All tests assume a confidence level of 95%.

7.1 & Nearest Neighbour Classifier

Across all parameter configurations for the kNN classifier, it
was found that the three ranking functions (AED, IG, and
SU) performed relatively similarly in most cases in terms of
classification accuracy, with the IG and SU ranking func-
tions tending to have slightly better results. An exception is
the AGRAWAL scenario, for which the AED ranking func-
tion performed noticeably worse than the other two ranking
functions, though still better than kNN standalone. For run-
time and memory usage, it was found that the AED ranking
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Table 1: Number of features relevant to the clas-
sification problem for each concept across all data
streams used in this work.

Concept 1 | Concept 2 | Concept 3 | Total features
AGRAWAL 1 3 3 9
ASSETS 4 3 4 5
BG 3 3 3 10
BG 2 3 3 3 15
BG 3 3 3 3 15
CONDITIONAL 18 7 15 40
FY A 19 - - 40
FY B 13 - - 120
FY C 6 6 106
FY D 20 18 17 120
FY A Drift 19 16 - 40
FY B Drift 13 15 - 120
LED 7 7 - 24
SEA 2 2 2 13

function tended to take longer and use more memory than
the SU and IG ranking functions. The IG and SU ranking
functions gave very similar results for both accuracy, run-
time, and memory usage, with SU tending to have a slight
edge. Table 2 compares the accuracy results for the different
ranking functions with the default parameter configuration
which supports this general trend. Due to these aforemen-
tioned advantages, we focused on the SU ranking function
in this work and use it as the default ranking function for
experiments.

We compare the default configuration’s results to the base-
line kNN classifier’s results, which used a k of 10 and a
window size of 1000. Full results of experiments conducted
for this work can be found and reproduced on the GitHub
repository mentioned in the previous section.

A comparison between the default configuration and the
kNN standalone classifier is shown in Table 3. The re-
sults for kNN with ISS are displayed in black with the in-
crease/decrease in performance from kNN without ISS and
kNN with ISS displayed in the number in brackets, with blue
indicating better results for ISS, and red indicating worse.
We observe that the kNN classifier benefits from ISS feature
selection in classification accuracy in all experiments for the
default configuration. These improvements are supported
by Wilcoxon’s test which indicates statistically significant
results. Figures 1 and 2 show time series graphs of the clas-
sification accuracy plotted against the number of instances
stream for each experiment conducted in this work, with the
occurrence of feature drifts marked by gray the vertical lines.
We observe improvements for kNN with ISS, which plots a
line which mirrors the shape of standalone kNN classifier
plot and is almost always of a higher accuracy at all stages
of the stream across all scenarios.

Runtime was generally slower, except for the streams gen-
erated by the Conditional generator. There no significant
differences were found. Memory usage was also lower for
ISS for the BG, LED, and SEA data streams: an improve-
ment in RAM-Hours was observed despite slower runtime
results. The difference again is significant according to a
Wilcoxon’s paired test.

Overall, all configurations of KNN experiments conducted
in this work produced a higher average accuracy than the
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Table 2: ISS experiment accuracy results (%) for
different ranking functions using the default config-

uration with the kNN classifier.

Stream | AED kNN-ISS | IG kNN-ISS | SU kNN-ISS
AGRAWAL 77.15 88.97 88.97
ASSETS 85.42 85.61 85.53
BG 89.78 89.79 89.79
BG2 89.77 89.77 89.76
BG3 89.59 89.59 89.59
CONDITIONAL 91.14 91.84 91.86
FY A 71.29 72.87 72.87
FY B 84.98 85.35 85.33
FY C 41.08 44.99 44.99
FY D 67.98 67.96 67.90
FY A Drift 81.24 81.27 81.27
FY B Drift 80.52 80.52 80.53
LED 73.60 73.64 73.62
SEA 88.28 88.28 88.29

Table 3: ISS experiment results using default config-
uration for the kNN classifier using the SU ranking

function.
Stream | Avg Accuracy (%) CPU Time (s) RAM-Hours (kb-hour)
AGRAWAL | 8807 (125.34) | 35331 (1153.63) 63.58 (125.00)
ASSETS 85.53 (+1.41) 304.95 (+153.00) 41.13 (420.79)
BG 89.79 (+5.45) 456.48 (+236.69) 86.43 (-53.03)
BG 2 89 76 (+9.72) 517.89 (+53.49) 152.55 (+16.24)
BG 3 50 (+12.62) | 565.14 (191.24) 166.47 (+125.05)
CONDITIONAL 91 ‘36 (+14.61) | 735.15 (-559.53) 341.12 (-252.37)
FY A | 7287 (+10.69) 770.34 (-788.02) 143.87 (-440.08)
FY B | 8533 (+11.11) | 1621.80 (-4640.54) | 2713.85 (-7602.82)
FY C 44.99 (426.96) 745.03 (-4758.63) 1149.98 (-7077.83)
FY D 67.90 (428.35) 1384.43 (-4978.44) 2356.87 (-8125.98)
FY A Drift | 8127 (+7.40) | 1000.18 (-408.01) 580.64 (-224.66)
FY B Drift | 8053 (+17.21) | 1576.40 (-3964.14) |  2644.58 (-6506.91)
LED |  73.62 (+9.29) 824.93 (+69.26) 326.19 (-20.44)
SEA 88.29 (+8.75) 426.26 (+151.83) 98.32 (-35.83)

kNN baseline classifier. The impact of parameters on overall
average classification accuracy is varying depending on the
streams. Most experiments had only slight differences (<
2%) in overall classifier accuracies. In 4 streams (AGRAWAL,
BG2, SEA, and LED), parameters had little impact on the
overall mean classifier accuracy, with only around a 1% dif-
ference in overall mean accuracy between the best perform-
ing ISS experiment and the worst performing ISS experiment
tested in this work.

While it was found that accuracy tended to be largely sim-
ilar across all configurations, runtime and RAM-hours per-
formance was found to be much more dependent on the pa-
rameters set for ISS. It was found that the size of the w had
the most impact on computation time and RAM-Hours, as
a larger w meant more instances to search through for each
kNN evaluation. The size of the hill climb window h also had
a noticeable impact on computation time and RAM-Hours,
as a larger window hill climbing window means that more
subsets were searched at every iteration; however, this was
found to be secondary to the size of w.

7.2 Naive Bayes Classifier

As with the kNN classifier, we again focus on a default con-
figuration of ISS for comparison. Other parameter config-
urations were also explored but were found to have similar
performance for accuracy, runtime, and memory usage. Us-
ing hill climbing to reduce search space was also explored
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but results indicated that the gains in runtime and memory
usage were minimal, at a slight cost of prediction accuracy.
Due to this, hill climbing was not used for experiments using
the Naive Bayes classifier.

We examined results for all three ranking functions (AED,
IG, and SU) for the NB classifier, the results shown in Table
4. We found all three ranking functions to be very similar in
their overall performance, with differences between accuracy
being less than 1%, run time less than 1 second, and RAM-
hours less than 0.8 kb-hour for all ranking functions on all
streams.

The accuracy results for the default configuration are pre-
sented in Table 5. As with the kNN tables, the results for NB
with ISS are displayed in black with the increase/decrease
in performance from NB without ISS and NB with ISS dis-
played in the number in brackets, with blue indicating bet-
ter results for ISS, and red indicating worse. Concerning
accuracy, the default configuration of NB with ISS outper-
formed NB standalone by a noticeable amount in most of
the streams tested. The exceptions to this were the FY A,
and FY B scenarios, which featured no feature drift, where
NB performed within 0.1% accuracy to NB with ISS. De-
spite these minor accuracy losses, Wilcoxon’s test showed
significant improvements when ISS is used with NB classifi-
cation.

Again referring to Figures 1 and2 which show the plotted
classification accuracy against the stream for each experi-
ment, we notice that for the FY A and FY B scenarios, the
NB and NB ISS lines overlap across the entire plot. We
also observe that in all scenarios except the BG3 scenario,
NB with ISS performs very closely to NB standalone before
the occurrence of any feature drift; the two configurations
diverge however upon the occurrence of drift with NB with
ISS adapting significantly faster than standalone NB across
all scenarios.

Regarding computational resources, we notice that NB with
ISS was always slower than NB by itself, and also always
used more memory. The differences in run time can be at-
tributed to the high speed of the NB classifier which means
that the reduction in computation time gained from feature
selection is still not as large as the overhead runtime cost in-
curred from ISS. Despite these increases being statistically
significant, the runtime and memory usage for NB with ISS
is still within reasonable limits and the classifier still has
much significantly better runtime and memory usage com-
pared to the kNN classifier.

7.3 Feature selection accuracy

This section discusses ISS’ performance in selecting the right
number of features. As we used synthesized data for all ex-
periments conducted in this work, the true number of fea-
tures relevant to the classification problem of each stream
is known; with this knowledge in hand, we examine ISS’
ability in selecting the correct number of features by com-
paring the size of the subset of relevant features selected to
the true number of relevant features. Taking the weak as-
sumption that the ranking stage is able to order relevant
features above irrelevant features in at least some manner,
we assume that a subset size closer to the true number of
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Table 4: ISS experiment accuracy results (%) for
different ranking functions using the default config-
uration with the NB classifier.

Stream | AED NB-ISS | IG NB-ISS | SU NB-ISS
AGRAWAL 81.51 81.80 81.78
ASSETS 85.29 84.51 84.85
BG 88.55 88.57 88.55
BG2 75.93 75.88 75.89
BG3 68.15 68.13 68.06
CONDITIONAL 89.05 89.25 89.10
FY A 87.15 87.12 87.13
FY B 91.88 91.84 91.84
FY C 52.81 52.6 53.01
FY D 78.09 77.86 77.92
FY A Drift 84.98 84.53 84.47
FY B Drift 84.57 84.57 84.62
LED 72.82 72.79 72.79
SEA 83.79 83.90 83.90

Table 5: ISS experiment results using default con-
figuration for the NB classifier using the SU ranking
function.

Stream | Avg Accuracy (%) | CPU Time (s) | RAM-Hours (kb-hour)

AGRAWAL 81.78 (+8.46) 3.00 (+1.60) 0.54 (+0.54)
ASSETS | 84.85 (+3.86) 17.66 (+1.04) 2.39 (+z 38)
BG |  88.55 (+8.76) 2.32 (+1.48) 0.44 (+0.44)
BG 2 75.89 (+8.94) 3.64 (+2.07) 1.08 (+] 08)
BG3 | 6806 (+11.68) 3.55 (+2.37) 1.05 (+1.05)
CONDITIONAL |  89.10 (+11.13) | 8.43 (+5.66) 3.93 (+3 92)
FY A 87.13 (0.00) 12.08 (+6.82) 7.03 (+6.99)
FY B 91.84 (-0.04) 41.75 (+25.49) 70.57 (+70.22)
FY C | 5301 (+12.30) | 58.21 (+22.91) 92.59 (+90.76)

FYD | 77.92(+15.88) | 66.83 (+26.86) 117.44 (+115.09)

FY A Drift |  84.47 (+4.97) 12.07 (+6.60) 7.01 (+6.98)

FY B Drift | 84.62 (+15.61) | 41.60 (+25.98) 70.25 (+69.92)
LED | 72.79 (+16.35) 5.50 (+3.18) 2.19 (+2.18)
SEA |  83.90 (+0.14) 418 (+2.51) 0.97 (+0.97)

relevant features would indicate good performance for the
algorithm. We compare only the size and not the compo-
sition as ISS’ feature subset selection searches for a feature
subset size rather than a feature subset composition.

Tables 6 and 7 show the results of the kNN and NB classifiers
using the standard ISS configuration. The columns of the
tables are split into each stream concept in the first row. The
second row of the tables split the results into the percent-
age of predictions that the algorithm made which correctly
predicted the true number of features, and the percentage
of predictions predictions within two to the true number
of relevant features for each stream concept. We observed
the number of classifications made where the subset was:
the same size as the true number of relevant features, and
within £2 of the true number of features.

We found that for most cases, ISS was not always able to
correctly identify the true number of relevant features for
either of the classifiers. The kNN classifier in general had
better performance than the NB classifier in this regard,
with the the kNN classifier making 90%+ of predictions us-
ing a subset size the same as the true number of relevant
features for AGRAWAL, BG, and SEA scenarios, while the
NB classifier only achieves this in the BG scenario.

kNN with ISS was also able to achieve a 90%-+ number of
predictions within two of the true number of relevant fea-
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Table 6: Table showing the feature count accuracy
(%) for the kNN classifier using the standard ISS
parameter configuration.

Concept 1 Concept 2 Concept 3
Correct | Within 2 | Correct | Within 2 | Correct | Within 2
AGRAWAL | 98.36 99.96 38.33 100.00 100.00 100.00
Assets 0.02 46.95 3.65 100.00 0.00 100.00
BG | 98.83 99.25 98.09 100.00 100.00 100.00
BG 2 1.12 99.20 0.14 99.99 17.15 100.00
BG 3 15.74 97.41 0.00 97.88 2.55 100.00
Conditional 0.02 0.16 0.00 1.16 0.00 0.00
FY A 0.00 0.00 - - - -
FY B 0.05 1.15 - - - -
FY C 0.04 0.10 0.00 4.82 - -
FY D 0.00 0.00 0.11 25.24 4.76 9.49
FY A Drift 0.00 0.00 0.38 2.44 - -
FY B Drift 0.07 0.94 0.07 0.49 - -
LED | 4355 98.44 48.33 99.23 - -
SEA | 97.94 97.95 99.55 99.96 93.77 99.98

Table 7: Table showing the feature count accuracy
(%) for the Naive Bayes classifier using the standard
ISS parameter configuration.

Concept 1 Concept 2 Concept 3
Correct | Within 2 | Correct | Within 2 | Correct | Within 2
AGRAWAL 3.00 36.46 0.00 99.55 50.46 100.00
Assets | 10.99 100.00 0.82 100.00 18.07 90.72
BG | 99.85 100.00 14.02 100.00 0.00 100.00
BG 2 1.47 1.47 0.00 85.55 0.00 99.48
BG 3 0.00 99.33 0.00 100.00 45.36 69.21
Conditional 0.00 0.00 0.00 0.30 0.00 0.00
FY A 0.40 12.41 - - - -
FY B 0.89 16.23 - - - -
FY C 0.87 11.63 0.00 2.88 - -
FY D 3.85 17.08 10.77 36.55 0.81 3.30
FY A Drift 0.11 12.37 11.08 38.68 - -
FY B Drift 1.76 9.62 0.27 3.34 - -
LED 6.96 32.52 39.01 99.46 - -
SEA | 21.75 22.27 0.00 33.38 0.00 2.86

tures for 19/20 of the concepts not generated by the Con-
ditional generator, while NB did the same for only 13/20 of
the concepts not generated by the Conditional generator.

For stream datasets generated by the Conditional generator
(Conditional, FY A, FY A Drift, FY B, FY B Drift, FY C,
and FY D) for which the concepts were more complex, ISS
struggled to produce a subset size close to the true number
of relevant features for both the kNN and NB classifiers,
with the classifier making less than 50% of predictions us-
ing a subset size within two to the true number of relevant
features for either classifier across all concepts. An interest-
ing observation to make is the generally larger performance
improvements observed for the kNN classifier when utiliz-
ing ISS for these subsets compared to those not generated
by the Conditional generator. Despite ISS being unable to
perfectly identify the true number of relevant features, the
algorithm is still selecting useful subsets able to boost clas-
sification accuracy and to reduce resource consumption.

7.4 Accuracy difference scaling ranking

Experiments with accuracy difference scaling enabled for
ranking (ADSR) were conducted to explore its effect on
classification accuracy. Parameter configurations differed in
confidence thresholds ¢ (from 0 to 0.2), scalar values ¢ (1 to
10), and whether or not to only penalize the ranking score o.
Experiment used the same configuration as those mentioned
in Section 7. We found that accuracy difference scaling had
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Table 8: Table comparing the classification accuracy
of kNN and NB with ISS using accuracy difference
ranking compared to without. Results have been
rounded to 2DP

kNN-ISS | kNN-ISS AGR | kNN Diff | NB-ISS | NB-ISS AGR | NB Diff
AGRAWAL 88.97 89.18 0.21 81.78 81.78 0.00
Assets 85.53 85.63 0.10 84.85 84.73 -0.12
BG 89.79 89.87 0.08 88.05 88.48 0.43
BG 2 89.76 89.86 0.10 75.89 75.65 -0.24
BG 3 89.59 89.66 0.07 68.06 67.79 -0.29
Conditional 91.86 92.07 0.21 89.13 89.10 -0.03
FY A 72.87 73.12 0.25 87.13 87.13 0.00
FY B 85.33 86.29 0.96 91.84 91.85 0.01
FY C 44.98 44.98 0.00 53.01 53.00 -0.01
FY D 67.90 66.88 -1.02 77.92 77.93 0.01
FY A Drift 81.27 81.57 0.30 84.47 84.47 0.00
FY B Drift 80.53 86.29 5.76 84.62 91.85 7.23
LED 73.62 73.72 0.10 72.79 72.82 0.03
SEA 88.29 88.35 0.06 83.90 83.90 0.00

marginal impact on the overall classification accuracy and in
some cases gave worse accuracy results. A specific parame-
ter configuration using a confidence threshhold ¢ of 0.05, a
scaling weight ¢ of 4, and only penalization was selected as
the default configuration. This configuration was selected
based on its performance across all data sets tested.

Table 8 shows the classification accuracy results for kNN and
NB with ISS in the default parameter configuration using
ADSR compared to without ADSR. The fourth and seventh
columns show the difference between ADSR enabled and dis-
abled, with red indicating worse results and blue indicating
better results for ADSR. Overall, we notice that utilizing
ADSR in the ranking function does not improve accuracy in
a significant way in most cases tested, with only one stream
(FY B Drift had improvement over 1% in overall accuracy.
The kNN classifier tended to perform slightly better with
ADSR, however ADSR often tends to produce indifferent or
slightly worse results when used with the NB classifier.

Tables 9 and 10 show the feature selection accuracy results
for kNN and NB with ISS and ADSR enabled. The columns
are split into each stream concept in the first row. The sec-
ond row splits the results into the percentage that the algo-
rithm correctly predict the true number of features, and pre-
dictions within two to the true number of relevant features
for each stream concept. Difference between ADSR and
without ADSR are highlighted, with red indicating worse
results for ADSR and blue indicating better. As with the
classification accuracy results, ADSR’s impact on feature
selection accuracy were overall mixed. For the kNN classi-
fier, ADSR tended to produce worse or slightly worse results
while producing mostly similar results for the NB classifier.

As the results for both the classification accuracy and feature
selection accuracy were mixed and any improvements are not
significant, we did not utilize it further in our experiments.

7.5 1SS against DFW and HAT

We compared ISS against kNN/NB with DFW [7], an algo-
rithm which attempts to address feature drifts via feature
weighing, and HAT, a classifier which has been shown to
give good performance in feature drifting streams [6]. Com-
parison results between 1SS, DFW, and HAT are shown in
Tables 11, 12, and 13.

Overall, it was observed that HAT produced the highest
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Table 9: Table showing the feature count accuracy
(%) for the kNN classifier using the standard ISS
parameter configuration with ADSR.

Concept 1 Concept 2 Concept 3
Correct | Within 2 | Correct Within 2 Correct Within 2]
AGRAWAL[97.97 -0.38 (99.96 64.93 +26.6(100.00 100.00 100.00
Assets| 0.02 46.95 3.65 100.00 0.00 99.92
BG|98.83 99.25 98.09 100.00 100.00 100.00
BG 2/0.00 -1.12(98.75 -0.45|0.14 100.00 +-0.01| 17.41 +0.26| 99.99 -0.01
BG 3(15.63 -0.11 |97.41 0.00 99.97 +2.09| 2.55 100.00
Conditional| 0.01 -0.010.04 -0.12{0.00 0.03 -1.13| 0.00 0.00
FY A|0.00 0.00 - - - -
FY B|0.00 -0.05[2.79 +1.64| - - - -
FY C|0.04 0.10 0.00 4.82 99.99 -
FY D|0.01 4+0.01{0.01 +0.01/0.01 -0.1 | 8.58 -16.66| 0.01 -4.75| 2.89 -6.6
FY A Drift| 0.00 0.00

2.49 +2.11| 2.95 +0.51|17.97 -
FY B Drift| 0.01 -0.06|3.83 42.89/0.30 +0.23| 0.93 +0.44| -

LED|36.21 -7.34 |96.99 53.04 +4.71| 97.4 -1.83 - -
SEA|98.18 +0.24]98.19 +0.24|99.48 99.94 -0.02]93.77 99.98

Table 10: Table showing the feature count accuracy
(%) for the Naive Bayes classifier using the standard
ISS parameter configuration with ADSR.

Concept 1 Concept 2 Concept 3
Correct [Within 2| Correct Within 2 Correct Within 2 ‘
AGRAWALJ 0.00 -3.00] 36.46 0.00 99.55 51.14 +0.68[100.00
Assets|10.99 100.00 | 0.82 100.00 12.68 -5.39 | 81.36 -9.36
BG[99.85 100.00  |14.77 4-0.75[100.00 100.00 +100 {100.00
BG 2| 1.47 1.47 0.00 85.55 0.00 99.48
BG 3(0.00 99.33 0.00 100.00 45.36 69.21
Conditional| 0.00 0.00 0.00 0.30 0.00 0.00
FY A|0.40 12.41 - - - -
FY B|0.89 16.23 - - - -
FY C|0.87 11.63 0.00 2.88 - -
FY D|3.85 17.08  |10.77 36.55 0.81 3.30
FY A Drift| 0.11 12.37  |11.09 +0.01| 38.69 +0.01| - -
FY B Drift| 1.76 9.62 0.27 0.62 -2.72| - -
LED| 6.96 32.52 39.56 +0.55| 99.46 - -
SEA|21.75 22.27 0.00 33.36 0.00 2.86

mean accuracy for most experiments, and was generally com-
petitive with NB-ISS/kNN-ISS for the stream scenarios where
it was not the highest. DF'W was observed to be competitive
with ISS for the kNN classifier for mean accuracy; however,
a much more pronounced difference in mean accuracy was
observed for NB where ISS achieved better results. The re-
sults obtained by the statistical tests are shown in Figure 3:
they corroborate that HAT is still the best performing clas-
sifier, yet, the results obtained are not statistically superior
when compared to both NB-ISS and KNN-ISS.

Computation time (Table 12) and RAM-hours (Table 13) is
where ISS excelled, with NB-ISS being the fastest classifier
for all of the streams tested by a large margin. Both the ISS
versions of KNN and NB having much better computation
time and RAM-hours results than their DFW counterparts
for all streams. kNN specifically had significantly better
computation time and RAM-hours performance for ISS than
DFW. NB-ISS generally used half as much CPU time com-
pared to the HAT, and achieved better RAM-hours results
for all but the BG2, BG3, and LED scenarios. In Figures 4
and 5 we report the results of the statistical tests performed

CD = 1.63
5 4 3 2 1
L n 1 1 n 1 " |
i :
KNN — DFW b HAT
NB - DFW NB-1ISS
KNN — 1SS

Figure 3: Critical difference chart for accuracy rates.
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Table 11: Accuracy rates (%) obtained by HAT, ISS
using the SU ranking function and DFW for both
NB and kNN classifiers. Best result highlighted.

Stream | NB-ISS | NB-DFW | kNN-ISS | kNN-DFW | HAT
AGRAWAL 81.78 68.97 88.97 88.99 89.46
ASSETS 84.85 74.00 85.53 91.56 94.13
BG 88.55 83.94 89.79 89.78 89.86

BG 2 75.89 75.67 89.76 89.50 89.77

BG 3 68.06 56.11 89.59 89.44 89.59
CONDITIONAL 89.10 78.12 91.86 92.56 96.17
FY A | 87.13 62.98 72.87 66.99 86.56
FYB | 91.84 72.88 85.33 80.69 91.81

Fy C | 53.01 46.70 44.98 27.98 46.01
FYD | 77.92 68.06 67.90 50.43 75.82

FY A Drift 84.47 68.58 81.27 77.92 89.14
FY B Drift 84.62 73.74 80.53 73.77 89.18
LED 72.79 72.28 73.62 71.76 73.69

SEA 83.90 73.61 88.29 84.80 88.87

Table 12: CPU Time (s) obtained by HAT, ISS using
the SU ranking function and DFW for both NB and
kNN classifiers. Best result highlighted.

Stream | NB-ISS | NB-DFW | kNN-ISS | kNN-DFW | HAT

AGRAWAL 3.00 14.48 353.31 1077.56 7.42
ASSETS | 17.66 33.63 304.95 500.09 35.10
BG 2.32 8.81 456.48 450.95 6.14

BG 2 3.64 16.60 517.89 691.29 7.11

BG 3 3.55 20.07 565.14 778.33 7.88

CONDITIONAL 8.43 106.61 735.15
FY A | 12.08 262.93 770.34

2980.35 14.32
4064.95 40.81

FY B | 41.75 2284.51 1621.89 14990.08 105.56

FY C | 58.21 1719.44 745.03 12047.13 233.72
FYD | 66.83 2816.18 1384.43 19907.43 281.96

FY A Drift | 12.07 305.55 1000.18 4262.95 38.05
FY B Drift | 41.60 2317.48 1576.40 15277.31 117.59
LED 4.18 59.67 824.93 931.52 14.81

SEA 5.50 30.54 426.26 1813.26 11.43

Table 13: RAM-Hours (kb-hour) obtained by HAT,
ISS using the SU ranking function and DFW for
both NB and kNN classifiers. Best result high-
lighted.

Stream | NB-ISS | NB-DFW | kNN-ISS | kNN-DFW HAT

AGRAWAL 0.54 2.65 63.58 49454.93 1.28
ASSETS 2.39 4.67 41.13 190.83 6.61
BG 0.44 1.70 86.43 222.97 0.47
BG 2 1.08 4.96 152.55 626.55 0.69
BG 3 1.05 5.99 166.47 547.08 0.82
CONDITIONAL 3.93 49.64 341.12 352504.03 7.69
FY A 7.03 151.83 443.87 625934.49 54.21

FY B | 70.57 3811.55 2713.85 539595.71 261.76

FY C | 92.59 2659.90 1149.98 | 1980181.04 | 5495.08

FYD | 117.44 2356.87
FY A Drift 7.01 176.45 580.64

1327763.88 | 3916.08
657448.93 38.27
562537.78 | 386.37

FY B Drift | 70.25 3866.58 2644.58
LED 0.97 23.99 326.19 1056.71 0.93
SEA 2.19 7.12 98.32 165520.00 2.35

for CPU time and RAM-Hours measurements. We see that
indeed NB-ISS is the fastest algorithm, followed by the HAT
and NB-DFW, and that these three are statistically faster
when compared to kNN methods. Regarding RAM-hours,
NB-ISS is again highlighted as the most light-weighted ap-
proach, followed by HAT.

8. FUTURE WORKS

The proposed algorithm is somewhat specialized for only
kNN and NB, and thus, a more generalized algorithm is

30



5 4
L n 1

KNN - 1SS

[
o

NB - 188
HAT
NB -~ DFW

Figure 4: Critical difference chart for CPU time rates.

CD = 1.63
5 4 2
L n 1 n 1 1

KNN — DFW J
KNN —ISS

NB— 1SS
HAT
NB -~ DFW

Figure 5: Critical difference chart for RAM-Hours rates.

something worth looking into. However, such a generaliza-
tion of the algorithm is something which is not without dif-
ficulty, as the algorithm relies on the cumulative nature of
the kNN and NB classifiers to keep computational costs at
a reasonable rate. Consequently, any other classifier to be
used with ISS will most likely also need to be able to take
advantage of information from the (n — 1)-th subset for the
computation of the (n)-th subset.

Another part of the algorithm which should be investigated
more thoroughly, is the heuristic used to determine the sub-
set size for kNN. In this work, hill climbing was selected
for its simplicity and more importantly its speed, yet, other
heuristics may have better performance. One such direc-
tion would be to explore utilization of late acceptance hill
climbing [11], a simple meta-heuristic which delays the hill
climbing comparison, causing new solutions to be compared
to a past solution several iterations ago rather than the im-
mediately previous solution.

Finally, applications for the algorithm outside of classifica-
tion problems, such as regression, should also be explored in
future work.

9. CONCLUSION

In this paper, we introduced a novel embedded feature selec-
tion method aimed at addressing feature drift in fast-flowing
data streams. Our method divided feature selection into two
stages, by first ranking features and creating a subset, then
iteratively evaluating and removing the lowest ranked fea-
ture from the subset until the subset is empty. Experimental
results indicate that our method is successful at improving
mean classification accuracy in feature drifting streams for
both k-Nearest Neighbours and Naive Bayes classifiers. In
addition to the accuracy improvements, noticeable gains in
runtime and RAM hours were achieved for the kNN classifier
in scenarios with a large number of irrelevant features.
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