
Iterative Subset Selection for Feature Drifting Data Streams
Lanqin Yuan

University of Waikato

Hamilton, New Zealand

fyempathy@gmail.com

Bernhard Pfahringer

Deparment of Computer Science

University of Auckland

Auckland, New Zealand

b.pfahringer@auckland.ac.nz

Jean Paul Barddal

Programa de Pós-Graduação em

Informática

Pontifícia Universidade Católica do

Paraná

Curitiba, Brazil

jean.barddal@ppgia.pucpr.br

ABSTRACT
Feature selection has been studied and shown to improve classifier

performance in standard batch data mining but is mostly unex-

plored in data stream mining. Feature selection becomes even more

important when the relevant subset of features changes over time,

as the underlying concept of a data stream drifts. This specific kind

of drift is known as feature drift and requires specific techniques

not only to determine which features are the most important but

also to take advantage of them. This paper presents a novel method

of feature subset selection specialized for dealing with the occur-

rence of feature drifts called Iterative Subset Selection (ISS), which

splits the feature selection process into two stages by first ranking

the features, and then iteratively selecting features from the rank-

ing. Applying our feature selection method together with Naive

Bayes or k-Nearest Neighbour as a classifier, results in compelling

accuracy improvements, compared to prior work.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Online learning settings; Feature selection;

KEYWORDS
Data Stream Mining; Feature Selection; Concept Drift; Embedded

Feature Selection; Iterative Subset Selection;

ACM Reference Format:
Lanqin Yuan, Bernhard Pfahringer, and Jean Paul Barddal. 2018. Iterative

Subset Selection for Feature Drifting Data Streams. In Proceedings of ACM
SAC Conference (SAC’18). ACM, New York, NY, USA, Article 4, 8 pages.

https://doi.org/https://doi.org/10.1145/3167132.3167188

1 INTRODUCTION
Nowadays, many information systems are fed with continuously

generated sequential data, so-called data streams, which are poten-

tially infinite. Examples of streaming data include posts on social

media, wearable gadgets, and stock market trades. Motivated by

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC’18, April 9-13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00

https://doi.org/https://doi.org/10.1145/3167132.3167188

these and several other applications, the data mining community

has shifted its attention to streaming scenarios, where new tech-

niques are proposed every year. Many of the current developments

tackle the transient characteristics of data streams, i.e., often the

underlying function that maps instances to classes change over

time, thus giving rise to a phenomenon called concept drift.
In this paper, we focus on a specific kind of concept drift: feature

drifts. A feature drift occurs whenever a feature becomes, or ceases

to be, relevant to the class determination. Recent studies on this

topic [5, 6] have shown that the number of techniques that can

dynamically determine which features are the most important over

time, and that is also able to take advantage of this information, is

relatively small.

We introduce a novel method for feature selection called Itera-

tive Subset Selection (ISS), which seeks to deal with feature drifting

scenarios. Our proposal is an embedded feature selection method,

where the feature selection process is part of the classifier’s model

construction process. We evaluate ISS’ effectiveness at addressing

the effects of the occurrence of drifts with two well known and

widely used classifiers: k-Nearest Neighbours and Naïve Bayes. Ad-

ditionally, we also evaluate our proposed algorithm against existing

works on the topic, highlighting its effectiveness and efficiency.

This paper is structured as follows: Section 2 introduces the task

of data stream classification, while Section 3 details the type of drift

we wish to tackle: feature drifts. Section 4 surveys related works

on feature drift adaptation, which is later used during the empiri-

cal analysis. Section 5 introduces our proposed method, which is

assessed and compared with prior approaches in Section 6. Finally,

Section 7 provides conclusions and directions for future work.

2 DATA STREAM CLASSIFICATION
Learning from ephemeral sequences of data comprises all the prob-

lems of conventional batch learning, e.g., missing values, noise,

class imbalance, or sparsity. On top of that, it introduces further

difficulties, such as single-pass processing, limited computational

resources, and concept drifts [15].

We focus on the classification task, which regards learning and

updating predictive models over time. Let S denote a data stream

providing instances in the it = (®xt ,yt) form, where t is its arrival
time stamp, ®xt is a vector of features from the entire feature set

X and yt ∈ Y its class. To denote the ith feature of an instance

®xt , we will use the Xi notation, while ®xti denotes the value of this
feature for an instance ®xt , where t will be dropped if unnecessary.

Our ultimate goal in classification is to learn and update a model

h : X → Y over time, upon the arrival of instances from S .

510

https://doi.org/https://doi.org/10.1145/3167132.3167188
https://doi.org/https://doi.org/10.1145/3167132.3167188

In streaming scenarios, classifiers process instances sequentially

as they arrive and discard them right after. Although there is no

restriction against buffering and processing instances periodically,

this must not jeopardize computational resources. This is important

since main memory is finite and its usage must be optimised so that

classifiers and their buffers fit into this limited space. Processing

time per instance must also be limited. If not, arriving instances will

be enqueued until the system crashes due to the lack of memory.

Lastly, since data streams are inherently temporal, they are also ex-

pected to be ephemeral: the underlying function mapping instances

to classes is likely to change, thus giving rise to a phenomenon

named concept drift [21].

3 FEATURE DRIFT
As described in the seminal work of Widmer [21], data streams are

susceptible to different types of drifts, including: (i) changes in the

characteristic feature values, (ii) evolution of the value domains of

features over time, (iii) features that were once important and that
now may become meaningless or the other way around, and so on.

In this paper, we tackle the above-emphasized type of drift, called

feature drift. A feature drift occurs when a subset of features

becomes, or ceases to be, relevant to the learning task [5].

To formalize feature drifts, we must first be able to discern be-

tween relevant and irrelevant features [26]. Given the entire feature

set X , such that Si = X \ {Xi }, then a feature Xi is relevant iff
Definition 1 holds, and otherwise, it is said to be irrelevant.

Definition 1. A feature Xi is relevant iff ∃S ′i ⊂ Si , such that

P[Y |Xi , S ′i] > P[Y |S ′i] holds.
If an arbitrary relevant feature is removed, then it will result

in a reduction of overall prediction power, because (i) it alone is

strongly correlated with the class, or (ii) it forms a feature subset

with other features that together are correlated with the class (this

concept is commonly referred as feature interaction [16]).

A feature drift occurs whenever a subset of features becomes, or

ceases to be, relevant to class prediction. Given X at a timestamp

t , we are able to select the ground-truth relevant features X ∗ ⊆ X
such that ∀Xi ∈ X ∗ Definition 1 holds and ∀X j ∈ X \ X ∗ the same

condition does not. A feature drift then occurs if, at a timespan

between ti and tj = ti + ∆, X
∗
at ti differs from X ∗ at tj .

Like other types of drift, changes in the relevant subset of features

X ∗ affect the ground-truth decision boundary. Ideally, we expect

classification models to detect and adapt to changes in X ∗, while
changes may be (i) steep, where the classifier would forget its entire

model and learn from scratch; or (ii) progressive, where its model

would be gradually updated given drifts [19].

4 RELATED WORK
Determining which features are relevant has been widely discussed

in batch learning. However, the same cannot be said about stream-

ing environments. Recently, the surveys of [4, 5] highlighted that

there are fewworks that explicitly tackle the problem of drifting fea-

tures, and these basically include decision trees [11], rule learning

[3] and ensembles [2, 19]. Furthermore, [5] provides a comprehen-

sive evaluation of some stream classifiers, concluding that a single

adaptive decision tree, namely the Hoeffding Adaptive Tree (HAT)

[8], was the best performing classifier over all w.r.t. the trade-off

between classification rate, processing time and memory usage.

The HAT is an extension to the incremental Very Fast Decision

Tree classifier [11], which uses the ADWIN drift detector [7] inside

decision nodes to monitor the internal error rates of the tree. If a

feature that is being used by a decision node becomes irrelevant,

one would expect the error rate to increase, and ADWIN will flag

a change. Consequently, the affected decision node will reset the

entire sub-tree, replace the irrelevant split with a better one, po-

tentially identifying and selecting a newly relevant attribute, and

restart growing a new sub-tree. This allows the HAT classifier to

detect and overcome feature drifts quickly and effectively.

More recently, the authors of [6] proposed a dynamic weighting

scheme for the problem of classification over data streams. In that

work, the estimation of the discriminative power of each feature

is updated using a sliding window approach. Feature evaluation

was performed using the Symmetrical Uncertainty scoring operator.

The discriminative power of each feature was used as a weighting

factor in the prediction process of both k-Nearest Neighbours and
Naïve Bayes classifiers, which resulted in useful accuracy gains, at

the expense of a reasonable amount of additional processing time

and memory usage.

A similar feature selection algorithm called INTERACT has been

proposed in [25]. The main differences between ISS compared to

INTERACT are that ISS wraps around and embeds the feature

selection process into the classifier to select feature subsets and

that ISS is incremental.

Finally, it is worth mentioning that feature drifts have also been

recently investigated in the context of regression, such as in the

work of [12]. However, regression is outside the scope of the work

presented here.

5 METHOD
A naïve brute force approach to the problem of identifying irrele-

vant features in a stream would, for every new example arriving in

the stream, exhaustively search through every possible subset of

features, evaluate each of these subsets using some goodness of fit

criterion, and select the features of the best performing subset. Such

an algorithm implicitly deals with changes in feature relevance as

the classification for each example is independent. On the other

hand, it is extremely inefficient and prohibitively expensive, re-

gardless of working in a batch or streaming settings, and therefore

unfeasible in practice.

Our proposed method improves upon this naïve approach: fea-

tures are first ranked using a scoring function, based on the existing

batch feature selection method called ESFS [13, 23]. Then only a

limited linear number of subsets is evaluated. Sections 5.1 and 5.2

detail the ranking and subset selection steps, while Sections 5.3

and 5.4 show how these steps are embedded within kNN and Naive

Bayes, respectively.

5.1 Ranking
Initially, the relevance of each feature is determined by evaluating

it individually and independently w.r.t. class prediction, using some

scoring function. The method sorts all features by their discrimina-

tive power, also allowing for filtering out irrelevant features. Only

511

the top f number of features (where f is a parameter) are kept for

use in the next stage of subset selection, features below the top f
ranks are ignored. In general, it is recommended to set f to cover

most, if not all features in the stream, so the method is able to adapt

to drastic drifts. Smaller f values reduce the search space and can

be used if there exists knowledge of the nature of features in the

data stream before evaluation. Rankings are recomputed periodi-

cally, using a sliding window of instances, therefore each ranking

is independent of any previous ranking. Thus the method can im-

plicitly deal with drift as only new instances in the window are

utilized. Re-ranking is performed only every r instances to reduce

computational load.

The three ranking functions used here are the Average Euclidean

Distance, Information Gain, and Symmetric Uncertainty [22].

Average Euclidean Distance (AED) is a simple ranking func-

tion based on the idea that after normalization, features which have

the most influence on the decision of the class value will be on

average further apart when plotted in Euclidean space. The cal-

culation of AED is different depending on whether an attribute is

nominal or numeric, while not requiring discretization as the other

ranking functions. The numeric formula of AED is given in Equa-

tion 1, where Xi is a numeric attribute in a stream with L classes,

Nc (Xi) is the number of times that the class value c appeared in

the window with a valid value for X , and Xn
c is the value of X for

the n-th instance with a class value of c .

AEDnum(Xi) =
√ ∑

0≤c<j<L

(
MV(Xc) −MV(X j)

)
2

(1)

whereMV is the mean value, calculated as follows:

MV(Xc) =
1

Nc (X)

Nc (X)∑
n=0

Xn
c (2)

The AED formula for a nominal attribute is defined as follows:

AEDnom(Xi) =
∑

0≤c<j<L

[
1

V

V∑
v=0

√(
Xcv

Cc (Xi) −
X jv

Cj (Xi)

)
2

]
(3)

where Xi is a nominal attribute with V categories in a stream

with L number of known classes, Xcv is the number of instances

with a c-th class label and variable value v , and Cc (Xi) is the total
number of instances with a label c with a valid (non-missing) value

for Xi .
Information Gain (IG), a synonym for the Kullback-Leibler

divergence [17], is a widely used measure in machine learning

and data mining. It is a measure of the reduction of entropy by

the introduction of a variable. As it is only possible to calculate

Information Gain for nominal attributes, discretization is required

for numeric attributes. The discretization algorithm used in this

work was PiD [14], a single pass discretization algorithm specialized

for data streams. The formula used to calculate IG for an attribute

Xi and a class attribute Y is defined as follows:

IG(Y |Xi) = H (Y) − H (Y |Xi) (4)

where H (Xi) is the entropy for an attribute Xi with N distinct

values is given by the following formula:

H (Xi) =
N∑
j=0
−P(Xi = x j) log P(Xi = x j) (5)

and H (Y |Xi) is the conditional entropy, given by:

H (Y |Xi) =
N∑
j=0

p(x j)H (Y |Xi = x j) (6)

Symmetric Uncertainty (SU) can be seen as a normalized ver-

sion of Information Gain, and has been shown to give good per-

formance for feature selection [24]. Its main advantage over In-

formation Gain is that it overcomes the bias in the data (when

there is significantly more or less of some class/classes than others).

Again, Symmetric Uncertainty can only be calculated for nominal

attributes, and thus, discretization is required for numeric attributes.

The formula for Symmetric Uncertainty for an attribute X with the

class attribute Y is is defined as follows:

SU(X ,Y) = IG(X |Y)
H (X) + H (Y) (7)

5.2 Subset Selection
As streaming environments require algorithms to be fast, to keep up

with the stream, therefore an exhaustive search of all combinations

is out of the question. We utilize the ranking to reduce the search

space and Backward Feature Elimination [22] to select the best fea-

ture subset. As a consequence, we limit the search to a maximum of

f iterations, meaning that the growth of the number of evaluations

is linear in f rather than exponential, thus also avoiding a potential

combinatorial explosion. Backward Elimination is selected over

Forward Selection due to its potential for a slight optimisation for

the k-Nearest Neighbour classifier while giving the same results.

This is discussed in more detail in Section 5.3.

Initially, a subset S that contains all f ranked features is evaluated
and its prediction result recorded. The lowest ranked features are

iteratively removed from S , and the new smaller S is re-evaluated

until S is empty. The best subset is selected based on an estimate of

the accuracy achieved by each of the subsets by maintaining counts

of the number of times a subset correctly predicts the class when

the classifier uses only features in the given subset. These counts

are fuzzy counts as they are subject to a decay factor d to allow

for implicit adaptation to change. Counts are tied to the size of the

subset rather than the composition of the subset, similar to how

counts are kept in the Space Saving Algorithm [18], thus reducing

memory usage and complexity. The accuracy estimate for a subset S

is computed using the simple formula of
of correct predictions with S

total # of predictions with S

and the final prediction of the classifier selected based on the subset

with the current best estimate. While only the final prediction is

output, counts are updated for all subsets. The decay factor of the

counts is a user-given parameter d and is applied at fix intervals i .

5.3 k-Nearest Neighbours Classifier
k-Nearest Neighbours (kNN) was one of the classifiers we explored.
The implementation of the ISS subset selection for kNN is shown in

Algorithm 1. kNN classifies the target instance based on a majority

vote by its k nearest neighbors’ class values. Euclidean distance is

512

often selected as the distance measure due to its simplicity. The cu-

mulative nature of Squared Euclidean distance also allows for easy

maintenance of distances for each instance in the window. The kNN

classifier itself can utilize a slight optimisation from backward elimi-

nation using the knowledge that the Euclidean distance between the

target instance and instances in the sliding window are normalized.

Due to normalisation, the absolute difference in squared Euclidean

distance for each new feature added or taken away is bounded be-

tween 0 and 1, meaning we can separate instances into 3 subsets: (i)

setAwhere instances’ distances are updated and the instances used

in kNN evaluation, (ii) set B where instances’ distances are kept up

to date but the instances are ignored in kNN evaluation; and (iii) set

C where instances are ignored entirely and their distances not kept

up to date. Instances are able to move between A and B, and from

B to C , with instances unable to leave C once they enter. Initially

all instances begin in A. For any instance i with a current distance

Di we define ni = ⌈Di − Dk − 1⌉, where Dk is the distance of the

current k-th nearest neighbour. If ni ≥ 0, then we can safely ignore

i for the next ni iterations. In other words i moves from A to B and

is unable to return to A the next ni iterations of subset selection.
Instances in B still need their distances kept up to date as after ni
iterations, i might rejoin A and ni is recomputed again, with the

algorithm repeating until all f subsets have been explored.

After f /2 total evaluations, we can potentially eliminate in-

stances from the search as it becomes impossible for i to return

to A from B if ni is greater than the number of iterations left l . In
this case, i would move B to C if ni ≥ l , eliminating i from any

further distance updating as it will no longer be evaluated. Forward

selection would not allow for this optimisation to the same degree

as all distances would initially start between 0 and 1 for the initial

subset of only the top-ranked feature, meaning it is not possible to

determine which instances can be placed into B initially.

Despite this optimisation, it was found that searching through

every subset size for data streams is still generally computationally

prohibitive, as streams are prone to dramatic drifts and may have

a large number of features, which subsequently requires a large f
parameter to be able to adapt to change. While the ranking is itera-

tive and computationally inexpensive, A and B are still potentially

very large even after several iterations of subset selection. In the

worst case, subset selection runs the kNN search algorithm f times

for every new instance, which results in a complexity of O(k f w)
wherew is the size of the window containing the instances, and k
is the number of nearest neighbors.

To alleviate this problem, the simple algorithm of Hill Climbing

is utilized in a novel way to select the subset size and limit the

number of subsets evaluated. Hill Climbing is a naïve greedy local

search algorithm which incrementally and greedily selects the best

solution from the search frontier. While Hill Climbing is known

to be prone to becoming stuck in local optima, the occurrence of

local optima is found to be mitigated by first initially sorting the

features in the ranking stage, so long as the ranking function can

sort relevant features above irrelevant features. The search frontier

is limited by only evaluating subsets with a difference in a number

of features of at most ±h. This hill climb window h controls the

number of subset sizes searched around the best subset size selected

from the previous iteration. Complexity is therefore bounded by

O(kw(2h+1)), which allows experiments to complete in reasonable

Algorithm 1 k-Nearest Neighbours Classifier Subset Selection
Input:

a: Array of accuracy estimates for each subset size

h: Hill climbing window size

b: Size of previous best subset
f : Upper bound of subset size

r : List of ranked features sorted descending from most relevant to

least relevant

Output:
q: Final classification result after feature selection

b: Size of new best subset

1: function SelectSubsetKNN(a,h,b,f ,r)
2: l ← b − h; l ≥ 1 ▷ Lower bound of subset size

3: u ← b + h; u ≤ f ▷ Upper bound of subset size

4: for i from 1 to u do
5: S ← r [i] ▷ fill S with ranked features

6: end for
7: for i from u to l do
8: p ← result from kNN classifier with only features in S
9: Update a[size(S)]
10: S ← S − r [i] ▷ Remove bottom ranked feature from S
11: if i = b then
12: q ← p
13: end if
14: end for
15: b ← index of max(a) ▷ Set new best subset size

16: return q, b ▷ b is used for the next iteration of subset

selection

17: end function

time. It was found that Hill Climbing caused a very negligible

decrease (less than 1%) in overall accuracy compared to a static f
comprising all features in the stream due to slightly worse initial

accuracy, as the algorithm needs time to “climb”.

5.4 Naïve Bayes Classifier
TheNaïve Bayes classifier is a probabilistic classifier that determines

its classification result using Bayes’ theorem while making a strong

(naïve) independence assumption between each of the features

in a stream, given the class value. ISS works well with the Naïve

Bayes classifier as bayesian probability is cumulative when features

are assumed to be independent. This means that the next smaller

feature subset is easily and cheaply computed by removing the

probabilities of the least desirable feature from the current total

probabilities. Thus, the Naïve Bayes classifier does not face the same

performance limitations that the kNN classifier does. Therefore,

heuristic search, such as hill climbing, is not required to ensure

reasonable run-times, even for large f . The implementation of ISS

subset selection for the Naïve Bayes classifier is shown in Algorithm

2. A point to note is the necessity for the algorithm to maintain a

separate sliding window for ranking as unlike the kNN classifier,

the NB classifier does not use sliding windows by default.

513

Algorithm 2 Naïve Bayes Classifier Subset Selection

Input:
a: Array of accuracy estimates for each subset size

w : Ranking window

b: Size of previous best subset
f : Upper bound of subset size

r : List of ranked features sorted descending from most relevant to

least relevant

Output:
q: Final classification result after feature selection

b: Size of new best subset

1: function SelectSubsetNB(a,b,w ,f ,r)
2: for i from 1 to f do
3: S ← S + r [i] ▷ Fill S with ranked features

4: end for
5: for i from f to 1 do
6: p ← result from NB classifier with only features in S
7: Update a[size(S)]
8: S ← S − r [i] ▷ Remove bottom ranked feature from S
9: if i = b then
10: q ← p
11: end if
12: end for
13: add instance tow
14: whilew’s size ≥ w’s max capacity do
15: Remove oldest instance inw
16: end while
17: b ← index of max(a) ▷ Set new best subset size

18: return q, b ▷ b is used for the next iteration of subset

selection

19: end function

6 EVALUATION
In this section, we compare the average accuracy obtained by classi-

fiers, their processing time, and the memory (RAM-Hours) required

to process each of the tested data streams.

Experiments were conducted using the Massive Online Analysis

framework [9]. A large combination of ISS parameter configurations

was explored for both the kNN and NB classifiers. The parameters

explored were: the interval at which decay occurs for the accuracy

counts i (500, 1000, and 1500 were tested), the decay factor of the

accuracy counts d (0.05, 0.1, 0.15, 0.2, and 0.25 were tested), the

window size used by ranking functionsw (500, 1000, and 1500 were

tested), and the interval at which ranking occurs r (500, 1000, and
1500 were tested). The number of ranked features f was set to

encompass all features in the stream. The kNN with ISS specific hill

climb window size h parameter, which controls the number of sub-

sets searched around the current best size, was also explored with

sizes of 2, 4 and 6. The source files of the experiments conducted

can be found online at https://github.com/EMPaThy789/ISS-MOA.

As accessibility to real-world data streams was limited and sur-

rounded by ethical and privacy issues, artificially generated data

streams were used in their steed. All of the generators feature some

number of irrelevant features. Stream generator which featured

gradual feature drift tested were: AGRAWAL [1], Assets [6], BG

[4], LED [9] and SEA [5, 20]. Sudden feature drift was tested us-

ing a custom made generator for this work called the Conditional

Generator, also available in the project repository.

The Conditional generator generates classes with certain at-

tributes associated with each class. Each attribute associated with

a class has some valid ranges or values, depending on whether

the attribute is numeric or nominal. Each instance is generated by

first generating a class, then randomly re-setting the associated

attributes to valid ranges for the class. Drift are introduced by re-

associating attributes and their valid ranges. The streams generated

using this generator were: CONDITIONAL, FY A, FY B, FY C, and

FY D, with each stream increasing in complexity. FY A and FY B

both feature no drift and were repeated as separate streams to en-

compass feature drifts, and are referred to as FY A drift and FY B

drift.

Each experiment consisted of running the classifier on 500,000

instances of generated stream data. Points for feature drift were set

at every 200,000 instances for all feature drifting streams, except

FY A drift, FY B drift, and FY C, where only a single drift occurs

after 250,000 instances.

Finally, statistical significance across methods is verified using

Wilcoxon’s test, or a combination of Friedman and Nemenyi’s tests

depending on the number of methods compared [10]. All tests

assume a confidence level of 95%.

6.1 k Nearest Neighbour Classifier
Due to time and memory constraints, only experiments with the

SU ranking function were run for the kNN classifier in this work.

The SU ranking function was selected as it was found to give better

performance than the other two ranking functions overall in almost

all cases for the kNN classifier.

While a large number of classifier parameters were tested, we

focus on a default parameter configuration featuring a window size

w of 1000, a ranking interval r of 500, a decay rate d of 0.1, a decay

interval i of 1000, and a hill climbing window h of 4. This particular

configuration was selected based on the trade-off between accuracy

and computational resources. We compare this default configura-

tion’s results to the baseline kNN classifier’s results, which used

a k of 10 and a window size of 1000. Overall results are analyzed

more broadly. Full results of experiments conducted for this work

can be found on GitHub.

A comparison between this default configuration and the kNN

standalone classifier is shown in Table 1. The kNN classifier benefits

from ISS feature selection in classification accuracy in all experi-

ments for the default configuration, and these improvements are

statistically significant according to the Wilcoxon’s test. Runtime

was generally slower, except for the streams generated by the Con-

ditional generator. There no significant differences were found.

Memory usage was also lower for ISS for the BG, LED, and SEA

data streams: an improvement in RAM-Hours was observed despite

slower runtime results. The difference again is significant according

to a Wilcoxon’s paired test.

Overall, all configurations of kNN experiments conducted in this

work produced a higher average accuracy than the kNN baseline

classifier. The impact of parameters on overall average classification

accuracy is varying depending on the streams. Most experiments

514

https://github.com/EMPaThy789/ISS-MOA

Stream Avg Accuracy (%) CPU Time (s) RAM-Hours (kb-hour)

AGRAWAL 88.97 (+25.34) 353.31 (+153.63) 63.58 (+28.04)

ASSETS 85.53 (+1.41) 304.95 (+153.00) 41.13 (+20.79)

BG 89.79 (+5.45) 456.48 (+236.69) 86.43 (-53.03)

BG 2 89.76 (+9.72) 517.89 (+53.49) 152.55 (+16.24)

BG 3 89.59 (+12.62) 565.14 (+91.24) 166.47 (+125.05)

CONDITIONAL 91.86 (+14.61) 735.15 (-559.53) 341.12 (-252.37)

FY A 72.87 (+10.69) 770.34 (-788.02) 443.87 (-440.08)

FY B 85.33 (+11.11) 1621.89 (-4640.54) 2713.85 (-7602.82)

FY C 44.99 (+26.96) 745.03 (-4758.63) 1149.98 (-7077.83)

FY D 67.90 (+28.35) 1384.43 (-4978.44) 2356.87 (-8125.98)

FY A Drift 81.27 (+7.40) 1000.18 (-408.01) 580.64 (-224.66)

FY B Drift 80.53 (+17.21) 1576.40 (-3964.14) 2644.58 (-6506.91)

LED 73.62 (+9.29) 824.93 (+69.26) 326.19 (-29.44)

SEA 88.29 (+8.75) 426.26 (+151.83) 98.32 (-35.83)

Table 1: ISS experiment results for default configuration for
the kNN classifier. Difference kNN with ISS and between
kNN without ISS shown in brackets, with green indicating
better results for kNN with ISS and red indicating worse.

had only slight differences (< 2%) in overall classifier accuracies. In

4 streams (AGRAWAL, BG2, SEA, and LED), parameters had little

impact on the overall mean classifier accuracy, with only around a

1% difference in overall mean accuracy between the best performing

ISS experiment and the worst performing ISS experiment tested in

this work.

While it was found that accuracy tended to be largely similar

across all configurations, runtime and RAM-hours performance was

found to be much more dependent on the parameters set for ISS. It

was found that the size of thew had themost impact on computation

time and RAM-Hours, as a largerw meant more instances to search

through for each kNN evaluation. The size of the hill climb window

h also had a noticeable impact on computation time, and RAM-

Hours as a larger window hill climbing window means that more

subsets were searched at every iteration; however, this was found

to be secondary to the size ofw .

6.2 Naïve Bayes Classifier
As with the kNN classifier, we also focus on a default configuration

of ISS for comparison. The default configuration used a ranking

window w of 1000, a ranking interval r of 500, a decay rate d of

0.1, a decay interval i of 1000, with the ranking function being SU

to be in line with the kNN experiment. Overall results are again

analyzed more broadly in this section.

We more closely examined results for all three ranking func-

tions (AED, IG, and SU) for the NB classifier. All three ranking

functions were very similar in their performance. Difference be-

tween accuracy was less than 1%, run time less than 1 second, and

RAM hours less than 0.8 kb-hour for all ranking functions on all

streams. A point of interest is that the IG and AED ranking func-

tions were more competitive with the SU ranking function, often

giving slightly better accuracies for the NB classifier, which is in

contrast to the kNN classifier where the SU ranking function was

always slightly better than the other two.

The accuracy results for the default configuration are presented

in Table 2. Concerning accuracy, the default configuration of NB

with ISS outperformed NB standalone by a noticeable amount in

most of the streams tested. The exceptions to this were the FY A,

Stream Avg Accuracy (%) CPU Time (s) RAM-Hours (kb-hour)

AGRAWAL 81.78 (+8.46) 3.00 (+1.60) 0.54 (+0.54)

ASSETS 84.85 (+3.86) 17.66 (+1.04) 2.39 (+2.38)

BG 88.55 (+8.76) 2.32 (+1.48) 0.44 (+0.44)

BG 2 75.89 (+8.94) 3.64 (+2.07) 1.08 (+1.08)

BG 3 68.06 (+11.68) 3.55 (+2.37) 1.05 (+1.05)

CONDITIONAL 89.10 (+11.13) 8.43 (+5.66) 3.93 (+3.92)

FY A 87.13 (0.00) 12.08 (+6.82) 7.03 (+6.99)

FY B 91.84 (-0.04) 41.75 (+25.49) 70.57 (+70.22)

FY C 53.01 (+12.30) 58.21 (+22.91) 92.59 (+90.76)

FY D 77.92 (+15.88) 66.83 (+26.86) 117.44 (+115.09)

FY A Drift 84.47 (+4.97) 12.07 (+6.60) 7.01 (+6.98)

FY B Drift 84.62 (+15.61) 41.60 (+25.98) 70.25 (+69.92)

LED 72.79 (+16.35) 5.50 (+3.18) 2.19 (+2.18)

SEA 83.90 (+0.14) 4.18 (+2.51) 0.97 (+0.97)

Table 2: ISS experiment results for default configuration for
the NB classifier. Difference NB with ISS and between NB
without ISS shown in brackets, with green indicating better
results for NB with ISS and red indicating worse.

12345

CD = 1.63

HAT

NB − ISS
KNN − ISS

KNN − DFW
NB − DFW

Figure 1: Critical difference chart for accuracy rates.

and FY B scenarios, where NB performed within 0.1% accuracy

to NB with ISS. Despite these minor accuracy losses, Wilcoxon’s

test showed significant improvements when ISS is used with NB

classification.

Regarding computational resources, we notice that NB with ISS

was always slower than NB by itself. This can be attributed to the

high speed of the NB classifier which means that the reduction in

computation time gained from feature selection is still not as large

as the overhead cost incurred from ISS. Despite these increases

being statistically significant, the runtime for NB with ISS is still

fast, especially compared to the kNN classifier.

6.3 ISS against DFW and HAT
We compared ISS against kNN/NB with DFW [6], an algorithm

which attempts to address feature drifts via feature weighing, and

HAT, a classifier which has been shown to give good performance

in feature drifting streams [5]. Comparison results between ISS,

DFW, and HAT are shown in Tables 3, 4, and 5.

Overall, it was observed that HAT produced the highest mean

accuracy for most experiments, and was generally competitive with

NB-ISS/kNN-ISS for the stream scenarios where it was not the high-

est. DFW was observed to be competitive with ISS for the kNN

classifier for mean accuracy; however, a much more pronounced dif-

ference in mean accuracy was observed for NB where ISS achieved

better results. The results obtained by the statistical tests are shown

in Figure 1: they corroborate that HAT is still the best perform-

ing classifier, yet, the results obtained are not statistically superior

when compared to both NB-ISS and KNN-ISS.

Computation time (Table 4) and RAM-hours (Table 5) were where

ISS excelled, with NB-ISS being the fastest classifier for all of the

streams tested by a large margin. Both the ISS versions of kNN and

515

Stream NB-ISS NB-DFW kNN-ISS kNN-DFW HAT

AGRAWAL 81.78 68.97 88.97 88.99 89.46
ASSETS 84.85 74.00 85.53 91.56 94.13

BG 88.55 83.94 89.79 89.78 89.86
BG 2 75.89 75.67 89.76 89.50 89.77
BG 3 68.06 56.11 89.59 89.44 89.59

CONDITIONAL 89.10 78.12 91.86 92.56 96.17
FY A 87.13 62.98 72.87 66.99 86.56

FY B 91.84 72.88 85.33 80.69 91.81

FY C 53.01 46.70 44.98 27.98 46.01

FY D 77.92 68.06 67.90 50.43 75.82

FY A Drift 84.47 68.58 81.27 77.92 89.14
FY B Drift 84.62 73.74 80.53 73.77 89.18

LED 83.90 72.28 73.62 71.76 73.69

SEA 72.79 73.61 88.29 84.80 88.87
Table 3: Accuracy rates (%) obtained by ISS andDFW for both
NB and kNN classifiers. Best result highlighted.

Stream NB-ISS NB-DFW kNN-ISS kNN-DFW HAT

AGRAWAL 3.00 14.48 353.31 1077.56 7.42

ASSETS 17.66 33.63 304.95 500.09 35.10

BG 2.32 8.81 456.48 450.95 6.14

BG 2 3.64 16.60 517.89 691.29 7.11

BG 3 3.55 20.07 565.14 778.33 7.88

CONDITIONAL 8.43 106.61 735.15 2980.35 14.32

FY A 12.08 262.93 770.34 4064.95 40.81

FY B 41.75 2284.51 1621.89 14990.08 105.56

FY C 58.21 1719.44 745.03 12047.13 233.72

FY D 66.83 2816.18 1384.43 19907.43 281.96

FY A Drift 12.07 305.55 1000.18 4262.95 38.05

FY B Drift 41.60 2317.48 1576.40 15277.31 117.59

LED 4.18 59.67 824.93 931.52 14.81

SEA 5.50 30.54 426.26 1813.26 11.43

Table 4: CPU Time (s) obtained by ISS and DFW for both NB
and kNN classifiers. Best result highlighted.

12345

CD = 1.63

NB − ISS
HAT

NB − DFW

KNN − DFW
KNN − ISS

Figure 2: Critical difference chart for CPU time rates.

NB having much better computation time and RAM hour results

than their DFW counterparts for all streams. kNN specifically had

significantly better computation time and RAM hour performance

for ISS than DFW. NB-ISS generally used half as much CPU time

compared to the HAT, and achieved better RAM hour results for

all but the BG2, BG3, and LED scenarios. In Figures 2 and 3 we

report the results of the statistical tests performed for CPU time

and RAM-Hours measurements. We see that indeed NB− ISS is the

fastest algorithm, followed by the HAT and NB − DFW , and that

these three are statistically faster when compared to kNN methods.

Regarding RAM hours, NB − ISS is again highlighted as the most

light-weighted approach, followed by HAT.

Stream NB-ISS NB-DFW kNN-ISS kNN-DFW HAT

AGRAWAL 0.54 2.65 63.58 49454.93 1.28

ASSETS 2.39 4.67 41.13 190.83 6.61

BG 0.44 1.70 86.43 222.97 0.47

BG 2 1.08 4.96 152.55 626.55 0.69
BG 3 1.05 5.99 166.47 547.08 0.82

CONDITIONAL 3.93 49.64 341.12 352504.03 7.69

FY A 7.03 151.83 443.87 625934.49 54.21

FY B 70.57 3811.55 2713.85 539595.71 261.76

FY C 92.59 2659.90 1149.98 1980181.04 5495.08

FY D 117.44 4803.79 2356.87 1327763.88 3916.08

FY A Drift 7.01 176.45 580.64 657448.93 38.27

FY B Drift 70.25 3866.58 2644.58 562537.78 386.37

LED 0.97 23.99 326.19 1056.71 0.93
SEA 2.19 7.12 98.32 165520.00 2.35

Table 5: RAM-Hours (kb-hour) obtained by ISS and DFW for
both NB and kNN classifiers. Best result highlighted.

12345

CD = 1.63

NB − ISS
HAT

NB − DFW

KNN − DFW
KNN − ISS

Figure 3: Critical difference chart for RAM-Hours rates.

7 CONCLUSION
In this paper, we introduced a novel feature selection method aimed

at addressing feature drift in fast-flowing data streams. Our method

divided feature selection into two stages, by first ranking features

and creating a subset, then iteratively evaluating and removing the

lowest ranked feature from the subset until the subset is empty.

Experimental results indicate that our method is successful at im-

proving mean classification accuracy in feature drifting streams for

both k-Nearest Neighbours and Naïve Bayes classifiers. In addition

to the accuracy improvements, noticeable gains in runtime and

RAM hours were achieved for the kNN classifier in scenarios with

a large number of irrelevant features.

Future work includes the exploration of different ranking func-

tions or methods in addition to the ones mentioned in this work,

as well as exploring different classifiers’ interaction with ISS. The

accuracy difference between each subset after every iteration of

subset selection potentially has value to ranking which was not

explored in this work. A potentially more relevant feature or set of

features may cause a larger drop in accuracy when it is removed

from the subset in comparison to potentially less relevant features.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance

perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6):914–925,
1993. Special issue on Learning and Discovery in Knowledge-Based Databases.

[2] G. H. Albert Bifet, Eibe Frank and B. Pfahringer, editors. Accurate Ensembles for
Data Streams: Combining Restricted Hoeffding Trees using Stacking, volume 13 of

JMLR Proceedings. JMLR.org, 2010.

[3] E. Almeida, C. A. Ferreira, and J. Gama. Adaptive model rules from data streams.

In ECML/PKDD (1), volume 8188 of Lecture Notes in Computer Science, pages
480–492. Springer, 2013.

[4] J. P. Barddal, H. M. Gomes, and F. Enembreck. A survey on feature drift adaptation.

In Proceedings of the International Conference on Tools with Artificial Intelligence.
IEEE, November 2015.

516

[5] J. P. Barddal, H. M. Gomes, F. Enembreck, and B. Pfahringer. A survey on feature

drift adaptation: Definition, benchmark, challenges and future directions. Journal
of Systems and Software, 127(Supplement C):278–294, 2017.

[6] J. P. Barddal, H. M. Gomes, F. Enembreck, B. Pfahringer, and A. Bifet. On dynamic

feature weighting for feature drifting data streams. In ECML/PKDD’16, Lecture
Notes in Computer Science. Springer, 2016.

[7] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-

dowing. In In SIAM International Conference on Data Mining, 2007.
[8] A. Bifet and R. Gavaldà. Adaptive Learning from Evolving Data Streams, pages

249–260. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[9] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis.

J. Mach. Learn. Res., 11:1601–1604, Aug. 2010.
[10] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7:1–30, Dec. 2006.
[11] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’00, pages 71–80, New York, NY, USA, 2000. ACM.

[12] J. Duarte and J. Gama. Feature ranking in hoeffding algorithms for regression.

In Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017, pages 836–841, 2017.

[13] H. Fu, Z. Xiao, E. Dellandréa, W. Dou, and L. Chen. Image Categorization Using
ESFS: A New Embedded Feature Selection Method Based on SFS, pages 288–299.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[14] J. Gama and C. Pinto. Discretization from data streams: Applications to his-

tograms and data mining. In Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC ’06, pages 662–667, New York, NY, USA, 2006. ACM.

[15] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on

concept drift adaptation. ACM Comput. Surv., 46(4):44:1–44:37, Mar. 2014.

[16] I. Guyon. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, 2003.

[17] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist.,
22(1):79–86, 03 1951.

[18] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent
and Top-k Elements in Data Streams, pages 398–412. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2005.

[19] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan. Heterogeneous ensemble for

feature drifts in data streams. In Advances in Knowledge Discovery and Data
Mining, volume 7302 of Lecture Notes in Computer Science, pages 1–12. Springer
Berlin Heidelberg, 2012.

[20] W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale

classification. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’01, pages 377–382, New York,

NY, USA, 2001. ACM.

[21] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden

contexts. Mach. Learn., 23(1):69–101, Apr. 1996.
[22] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-

niques, Second Edition (Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[23] Z. Xiao, E. Dellandrea, W. Dou, and L. Chen. ESFS: A new embedded feature

selection method based on SFS. Technical Report RR-LIRIS-2008-018, LIRIS UMR

5205 CNRS/INSA de Lyon/Universite Claude Bernard Lyon 1/Universite Lumiere

Lyon 2/Ecole Centrale de Lyon, Sept. 2008.

[24] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pages 856–863, 2003.

[25] Z. Zhao and H. Liu. Searching for interacting features. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJCAI’07, pages 1156–1161,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[26] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu. Advancing

feature selection research. ASU feature selection repository, pages 1–28, 2010.

517

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

