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ABSTRACT
The data imbalance problem hampers the classification task. In

streaming environments, this becomes even more cumbersome as

the proportion of classes can vary over time. Approaches based

on misclassification costs can be used to mitigate this problem. In

this paper, we present the Cost-sensitive Adaptive Random Forest

(CSARF) and compare it to the Adaptive Random Forest (ARF) and

ARF with Resampling (ARFRE ) in six real-world and six synthetic

data sets with different class ratios. The empirical study analyzes

two misclassification costs strategies of the CSARF and shows that

the CSARF obtained statistically superior w.r.t. the average recall

and average F1 when compared to ARF.
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1 INTRODUCTION
Among the existing challenges in the classification task, we focus

on problems that involve skewed class distributions. Datasets with

class imbalance are those where one class outnumbers other classes.

Therefore, it is usual to classifiers to classify instances from the
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Table 1: Cost Matrix

Negative Positive

Predicted Negative cost(0,0) or TN cost(0,1) or FN

Predicted Positive cost(1,0) or FP cost(1,1) or TP

majority class correctly while presenting issues to classify instances

from the minority class. This phenomenon can be categorized as

intrinsic if the class imbalance is natural such as in the following

applications: fraud detection [3], oil spill detection [38], abnormal

activity classification [22] and breast cancer malignancy classifi-

cation [28]. Otherwise, if the occurrence of imbalance does not

originate from the problem itself, such as the failure of a sensor in

a system or the mishandling of the data by any reason, it is said to

be extrinsic. Regardless of the imbalance origin, the minority class

(positive class) is very often more relevant than the majority class

(negative class), as rare examples involve high costs if not correctly

detected.

The problem of imbalanced data is present in both batch and

data stream databases. The difference is that in the streaming envi-

ronments, the classification task becomes even more difficult as no

information can be retrieved from the whole dataset, as only data

from the past can be taken into account and there is no guarantee

that the data behavior observed thus far shall be maintained. In this

environment, the classification task consists in building a model

capable of categorizing an instance xt , which arrives at timestamp

t and belongs to a data stream S , in a given class [25]. Due to the

evolutionary behavior of a data stream, the proportion between

classes may vary over time, and new imbalances may arise [28].

Different solutions have already been presented by researchers

to reduce the impact of class imbalance in the classification task.

Among them, there are solutions focused on synthesizing new data

samples (oversampling) or removing instances (undersampling) to

reduce the inequality between the positive and negative classes

when training a classifier [2, 39]. There are also approaches using

ensembles of classifiers that aim to reduce the over-representation

of the majority class by dividing the main problem into balanced

sub-problems [11, 31]. Finally, some approaches involve misclas-

sification costs during the decision-making stage of a classifier

[24, 40].
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The solutions based on misclassification costs assign penalties

for classifying from a class in another. Hence, it is possible to employ

higher costs to the positive classes to make the classifier consider

it during prediction and training steps. If the classification task

is binary, the costs for each class can be represented by a cost

matrix for two classes, as denoted in Table 1. Mathematically, we

let cost(i, j) be the involved cost in classifying an example x in i
when its ground-truth class is j. For the classifier to induce a class

considering the misclassification costs, the better prevision for the

example x must be the class i which minimizes the sum of the

probabilities and costs for the actual class of x (Equation 1) [18].

L(x , i) =
∑
j
P(j |x) × cost(i, j) (1)

In this paper, we study the attribution of sensitivity to mis-

classification costs in an ensemble of adaptive trees, developed

to data stream classification, as known as Adaptive Random Forest

(ARF) [26]. We propose the Cost-sensitive Adaptive Random Forest

(CSARF), which employs two variations to consider misclassifica-

tion costs in its architecture. The solutions previous to CSARF to

handle imbalanced problems are described in Section 2. The CSARF

architecture details are listed in Section 3, and its empirical analysis

in Section 4, thus highlighting the competitive results it yields when

compared to state-of-the-art approaches. This work’s conclusions

are presented in Section 5.

2 RELATED WORK
The cost matrix can be applied either to (i) directly influence the

output probabilities of a classifier (threshold), or (ii) to oversam-

ple the instances with higher misclassification costs (sampling).

In [16], authors proposed the MetaCost algorithm, which assigns

cost sensitivity to a model, training it in a re-labeled dataset, such

that the new labels are given by an ensemble of classifiers that

uses a cost matrix. In terms of ensembles, the Balanced Random

Forest [8] builds each decision tree using a stratified sample of the

entire dataset. A similar approach is the Easy Ensemble [32], which

also divides the classification problem into balanced sub-problems.

Furthermore, each of its base classifiers is the result of the iteration

of Adaboost [36] over each balanced sub-problems. More recently,

the authors in [29] proposed the creation of an ensemble using

cost-sensitive trees. The weighted majority vote is given only by

the best base classifiers selected by a genetic algorithm. The same

authors proposed a new version which excludes the ensemble size

limitation as a parameter [30].

In batch environments, we have the facility to be able to query

how many times the dataset is needed. Therefore, the solutions

mentioned above are feasible to deal with imbalanced data. How-

ever, when working with potentially infinite and imbalanced data

streams, such techniques must be adapted to meet the needs of a

model for data stream mining, i.e., working within the limits of

processing time and memory usage [4].

Focusing on the classification of data streams, the Selective Recur-

sive Approach [9] (SERA) consumes the data stream as successive

batches and reuses the positive examples from previous batches to

decrease the degree of unbalance. Therefore, it deals with concept

drift by re-training a model using a balanced set with the positive

instances seen so far. The Learn++.CDS [15] and Learn++.NIE [14]

are two variations for unbalanced data streams from Learn++.NSE

[19]. Both variations maintain the Learn++.NSE feature of inter-

preting a data stream as successive batches. The CDS variation uses

SMOTE [7] to resample instances that are classified incorrectly in a

batch. A new classifier is trained in the enriched batch and may re-

place a current ensemble member if it does not satisfy the efficiency

condition for the enriched batch. The NIE variation aims to train

each of the classifiers in balanced subsets. The final prediction of

both variations is given by the weighted combination of the votes

of each classifier member of the ensemble.

To handle imbalanced data streams, authors in [23] proposed two

neural networks that assign misclassification costs in its objective

functions. And one of them has an adaptive cost matrix capable

of changing the weights involved whenever a concept drift occurs.

In [24], the same authors employ an error minimization function

that assigns high costs to the minority class in the neural network.

The authors in [41], use a cost matrix that is optimized by a genetic

algorithm during the training step.

More recently, a new version of Adaptive Random Forest (ARF)

for imbalanced data streams was introduced. The ARF with Resam-

pling (ARFRE) combines weights with Poisson’s distribution output

for a given instance [5]. As a result, ARFRE changes the chance

of an example being used in the training phase based on its class

distribution (Equation 2) and harverst it by resampling it following

a Poisson distribution with parameter λ. The higher the incidence
of a c class (Sc ), in a data stream with Sn of observed examples, the

lower the weight assigned to the instances which belong to this

class.

weiдht(Sc , Sn , λ) =
100 −

Sc×100
Sn

100

× p, s.t. p ∼ Poisson(λ) (2)

Sampling strategies are common as an approach to handle imbal-

anced data streams. However, oversampling the minority instances

or undersampling the majority can result in a slower training phase

or information loss, respectively. There are solutions such as ARFRE,

which applies both techniques without reproducing its drawbacks.

Nonetheless, it is unknown the impact of resampled data streams in

concept drift detection because the classifier interprets the problem

in a different way of its nature [5]. For these reasons, the use of

the cost matrix approach to influence the decision-making of a

classifier is an option to handle imbalanced data streams.

3 APPLYING MISCLASSIFICATION COSTS TO
ADAPTIVE RANDOM FOREST

Ensembles allow the use of different imbalance-driven strategies

to reduce the impact of class-skewed data in the classification task

as seen in Easy Ensemble, Balanced Random Forest and MetaCost.

However, not all imbalanced ensemble-based approaches work or

adapt to data stream environments due to a variety of factors, e.g.,

extensive computational calculations and the need for analyzing

the entire dataset. Therefore, we opted for cost-based strategies to

mitigate the impact of imbalance on model construction.

The Adaptive Random Forest (ARF) is an algorithm proposed

in [26] for the data stream environments. Using the main features
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present in the popular Random Forest (RF) [6], ARF builds an ensem-

ble of incremental decision trees capable of dealing with potentially

infinite data flows and concept drift. In practice, ARF induces a set

of Hoeffding Trees [17] using Online Bagging [34] and a limited

and randomly selected number of features to reproduce the RF

characteristics. Besides, it uses concept drift detectors for each tree

inside the ensemble. Thus, as soon as there is a suspicion of concept

drift in the data stream, ARF starts to train new classifiers to replace

the current classifier if the change is confirmed. The final decision

of the ensemble is given by the weighted majority vote using the

accuracy of each base classifier as the weight.

Even though ARF is a state-of-the-art algorithm in the data

stream classification, there was no exploratory study of its perfor-

mance in imbalanced environments by its authors in [26]. In this

paper, we present an analysis of ARF performance using imbal-

anced data sets along with the proposal of a new version of ARF

that is sensitive to misclassification costs.

Hereafter, we propose the Cost-sensitive Adaptive Random For-

est (CSARF - Algorithm 1), which is a variant of ARF planned

to handle class imbalance in data stream classification tasks. To

achieved this, the following modifications were made in ARF:

(1) The assignment ofweights to each internal tree usingMatthews

Correlation Coefficient (MCC) instead of accuracy;

(2) The addition of a sliding window to observe the classes

distribution over time;

(3) The modification in the learning process (sampling), in order

to ensure that all trees train with the instances belonging to

the minority class.

(4) The assignment of cost sensitivity with two different strate-

gies: local and global. Details on these strategies are de-

scribed below.

The evaluation using prequential [20] of the ARF trees priori-

tizes the participation of classifiers with better performances in

the weighted majority vote. However, the use of accuracy (Equa-

tion 3) in imbalanced environments is ineffective in evaluating the

performance of a classifier. For example, if a dataset contains only

100 minority instances within a set with 10,000 examples, the base

accuracy obtained by a model correctly classifying solely the ma-

jority class would be of 99%. Therefore, in the CSARF, the base

classifiers are weighted according to their performance in the MCC

metric (Line 12 of Algorithm 1). The metric MCC [33] (Equation

4) is calculated using the confusion matrix, and it is, among the

metrics derived from the confusion matrix, the most informative

for binary problems since it incorporates all four information when

evaluating a classifier (TP, TN, FP, and FN). By considering the

proportion of each class in its formula, it assigns higher values to

the classifiers that perform well in both classes [10].

Accuracy =
TP +TN

TP +TN + FP + FN
(3)

MCC =
TP ×TN − FP × FN√

(TP + FN )(TP + FP)(TN + FP)(TN + FN )
(4)

Changes #2 and #3 relate to the use of Online Bagging (OB) to

resampling the training set. The OB process used in ARF follows

the Poisson(λ = 6) distribution to sample the instances for training

its decision trees. By not differentiating between classes, there is a

Algorithm 1 Cost-sensitive Adaptive Random Forest. Symbols:
m: Maximum features evaluated per split; n: Total number of trees

(n = |T |); δw : Warning threshold; δd : drift threshold;wsize: Sliding

window size; cost: Cost matrix; c(·): Change detection method;

S : Data stream; B: Set of background trees;W (t): Tree t weight;
Iw : Sliding window; C: Cost matrix; P(·): Learning performance

estimation function.

1: function CSARF(m, n, δw , δd ,wsize, cost)

2: T ← CreateTrees(n)
3: W ← InitWeights(n)
4: Iw ← wsize

5: C ← cost

6: B ← ∅
7: while HasNext(S) do
8: (x ,y) ← next(S)
9: Iw ← (x ,y)
10: for all t ∈ T do
11: ŷ ← predict(t ,x)
12: W (t) ← P(W (t), ŷ,y)
13: RFTreeTrain(m, t ,x ,y)
14: if C(δw , t ,x ,y) then
15: b ← CreateTree()
16: B(t) ← b

17: end if
18: if C(δd , t ,x ,y) then
19: t ← B(t)

20: end if
21: end for
22: for all b ∈ B do
23: RFTreeTrain(m,b,x ,y)
24: end for
25: end while
26: end function

Algorithm2 RFTreeTrain. Symbols: λ: Fixed parameter to Poisson

distribution. GP : Grace Period before recalculating heuristics for

split test.

1: function RFTreeTrain(m, t , x , y)
2: k ← Poisson(λ = 6)

3: if k > 0 OR isPositive(x ,y) then
4: l ← FindLeaf(t ,x)
5: UpdateLeafCounts(l ,x ,k)
6: if InstancesSeen(l) ≥ GP then
7: AttemptSplit(l)
8: if DidSplit(l) then
9: CreateChildren(l, m)
10: end if
11: end if
12: end if
13: end function

probability that minority instances will not be presented for some

classifiers of the ensemble. During the training stage, CSARF allevi-

ates this problem by verifying if the recurrent instance is positive
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through the sliding window withwsize (Line 4 of Algorithm 1) size,

and then, it uses the minority example even if the value obtained

of k in Poisson(λ = 6) is equal to zero (Line 3 of Algorithm 2).

Formally, the weighted majority vote of a B size ensemble for an

x instance is computed by associating aw j weight with a probability

that an instance belongs to the i class given by the j classifier:

C(x) = argmax

i

B∑
j=1

w jpi j (5)

The fourth change is based on the use of the cost matrix by changing

the weighted majority vote (Equation 5) in two ways using the cost

framework L(x , i) (Equation 1). Therefore, the two variations of

CSARF are as follows:

• CSARF-local: This variation uses the misclassification costs

to influence the output of the base classifiers before the com-

bination of votes. Thus, the opinion of the classifiers is in-

fluenced, and this may or may not modify the vote obtained

after the combination. Mathematically, CSARAF-local com-

putes the majority vote by associating a weight w j (MCC

performance) to the i class that minimizes the sum of the

alternative probabilities of the current x class (Equation 6):

C(x) = argmax

i

B∑
j=1

w j ×

[
argmin

i

∑
i
L(x , i)

]
(6)

• CSARF-global: The “global” variation is based on changing

the probabilities after combining the classifiers. Influencing

thus, not the individual opinions of each decision tree, but the

final combination of their opinions. Mathematically, CSARF-

global after computing the majority vote chooses the i class
that minimizes the sum of the alternative probabilities of the

current x class (Equation 7):

C(x) = argmin

i

∑
i

∑
j
cost(i, j) ×

[ B∑
k=1

wkpjk

]
(7)

3.1 Misclassification cost heuristic
The most common method for constructing a cost matrix is to set a

fixed misclassification cost for each class. The values can be chosen

through an exhaustive grid search, thus testing various costs to

achieve the desired performance. This strategy works in a batch

environment, but in data streams, one must consider the variation

of class distribution and that the potentially infinite universe of a

data stream is unknown.

Strategies that use class distribution as information are alter-

natives to the use of fixed penalties. In [35], the authors defined

weights for each class according to their distribution in the database

(Equation 8).

classweiдht(i) =
#samples

#classes × #samples(i)
(8)

That is, if class A isn timesmore frequent than class B, it will have

its cost divided by n while class B will have its weight multiplied

by n. The authors employed this cost to perform majority class

under-sampling and minority class oversampling. Yet, in CSARF,

the costs are used to influence the classifier’s output probabilities.

Even though we do not have information about the distribution of

a data stream, this method can be applied to the sliding window in

CSARF. As data is consumed, the distribution of classes may vary,

and as a result, the misclassification costs change as well.

4 EMPIRICAL EVALUATION
In the previous section we showed two approaches to take into

account the cost matrix inside the Adaptive Random Forest learn-

ing scheme. In order to evaluate these approaches, the framework

Massive Online Analysis (MOA) [4] was chosen to implement the

tests as the ARF is already available in this environment.

4.1 Experimental Setup
The experimental protocol consists of evaluating whether the null

hypothesis that there is no significant difference between the CSARF

and the ARF for the imbalanced data sets is true.

We analyze the performance of the models using the prequential

or test-then-train strategy, ensuring that the model first tests and

then trains with each new instance of the data stream [21]. The

first 1,000 examples of each data set were used only to train the

model. In order to evaluate the CSARF with similar approaches, we

included the ARFRE [5] in the experimental protocol. All classifiers

parameters are given in Table 2. Furthermore, these learning algo-

rithms were evaluated in six real data sets with different levels of

imbalance and more six synthetic data sets built by two generators:

Santander - santd1. Dataset consisting of examples that iden-

tify whether a customer will carry out a transaction in the future,

regardless of the amount of money involved. It contains 76,020

instances, 370 attributes and a class distribution [96.04%, 3.95%].

PozzoloCredit Card FraudDetection - pozzl2. Contains credit
card transactions from Europe. The 284,807 examples, with 30 at-

tributes, contain only 492 fraudulent transactions, with a distribu-

tion of [99.82%, 0.17%].

Electricity - elect[27]. Contains data collected from the Aus-

tralian electricity market, where prices fluctuate according to mar-

ket demand and supply every 5 minutes. This dataset contains

45,312 instances described by 8 attributes, and labels determine

whether the price has gone up or down. Its distribution of classes

is [42.45%, 57.54%].

Give Me Some Credit - credt3. The data set available in the

Kaggle competition aims to determine the probability of a cus-

tomer becoming defaulted within the next two years. This data set

contains 150,000 instances described by 10 attributes, and its class

distribution is of [93.316%, 6.684%].

Airlines - airli4. The goal in this data set is to determine the

probability of a flight to be delayed. It contains 539,383 instances, 7

attributes and a distribution of [55.46%, 44.54%].

Private Credit Score - privt. A private dataset that represents

a credit score scenario. It contains 97,226 instances, 130 attributes,

and a class distribution of [26.07%, 73.92%].

Agrawal Generator - agrwl. This generator is capable of syn-
thesizing a binary classification task containing 9 attributes. In

1
https://www.kaggle.com/c/santander-customer-transaction-prediction/

2
https://www.kaggle.com/mlg-ulb/creditcardfraud

3
https://www.kaggle.com/c/GiveMeSomeCredit/

4
http://kt.ijs.si/elena_ikonomovska/data.html
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Table 2: ARF, CSARF and ARFRE parameters

Value

ensembleSize 10

mfeatureMode percent

mfeaturePerTreeSize 80%

lambda 6

imbalanceWindowSize 10,000

addition, it allows adding noisy data between attributes according

to a uniform random distribution [1]. We parameterize it to gen-

erate 1,000,000 instances with the following imbalance variations:

agrwl90 ([90%, 10%]), agrwl95 ([95%, 5%]), agrwl99 ([99%, 1%]).

SEAGenerator - sea. As the Agrawal Generator, SEAGenerator

is able to synthesize a binary classification task containing three

continuous attributes and employ a noise percentage of the data.

The generated versions have 10% noise and are defined as: sea90
([90%, 10%]), sea95 ([95%, 5%]), sea99 ([99%, 1%]) [37].

The ensemble votes for each instance are used to calculate the

performance of the model in the evaluation metrics. Because it is a

task of classification of unbalanced data, the use of metric accuracy

lacks information to evaluate the classifier as explained previously.

Therefore, metrics that consider performance in the minority class,

such as the AUC-PR (Area under the precision-recall curve), stand

out [12].

The precision (Equation 9) and the recall (Equation 10) are two

metrics constructed from the confusion matrix. The first allows us

to analyze how many of the positive examples detected are truly

positive, while the second makes it possible to evaluate how many

positive examples have been detected in their completeness. One

can combine both precision and recall using F1 score (Equation 11),

that is a harmonic mean between precision and recall for a given

class. It is also possible to combine both metrics via the calculation

of the Area Under the Precision-Recall Curve (AUC-PR). One can

calculate a precision and recall pair for each decision boundary

between the positive and negative class and thus construct a curve.

The single value obtained through the area below this curve (AUC-

PR) provides visualization of the performance of a classifier without

the performance in the majority class interfering with the result

obtained. The advantages of AUC-PR
5
on the popular AUROC

metric are detailed in [12].

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 ×
Precision × Recall

Precision + Recall
(11)

We evaluated the three models (ARF, CSARF, and ARFRE) in 12

datasets using the Average Recall, AUC-PR, and Average F1 Score.

The results are arranged in table 3, where the CSARF-g corresponds

to the global variation and CSARF-l to the local variation.

5
The library for python scikit-learn made it possible to evaluate the performance of

the models in the AUC-PR metric.

Table 3: Results for the experiment

Data set CLF Avg. Recall Avg. F1 AUC-PR

santd ARF 50.13 49.30 11.83

santd ARFRE 55.53 47.66 5.34

santd CSARF-g 70.38 52.73 11.90

santd CSARF-l 65.85 58.78 13.43
pozzl ARF 86.36 90.09 80.95
pozzl ARFRE 89.70 72.46 62.66

pozzl CSARF-g 91.95 71.80 80

pozzl CSARF-l 87.41 90.47 79.70

elect ARF 88.75 88.96 37.49

elect ARFRE 88.85 88.95 37.46

elect CSARF-g 88.94 88.85 37.51
elect CSARF-l 88.83 88.98 37.50

credt ARF 56.17 58.89 33.90

credt ARFRE 74.53 64.87 31.95

credt CSARF-g 75.45 62.51 34.04
credt CSARF-l 70.36 67.85 33.15

airli ARF 61.76 61.79 59.30

airli ARFRE 62.32 62.35 60.54
airli CSARF-g 61.04 61.06 58.22

airli CSARF-l 61.42 61.46 58.78

privt ARF 63.91 65.72 58.23

privt ARFRE 70.33 70.40 58.33

privt CSARF-g 71.47 69.49 58.32

privt CSARF-l 69.14 69.57 58.50
agrwl90 ARF 83.82 88.27 89.64
agrwl90 ARFRE 93.44 87.07 88.35

agrwl90 CSARF-g 92.67 82.93 89.47

agrwl90 CSARF-l 89 89.37 87.96

agrwl95 ARF 68.46 75.77 79.42

agrwl95 ARFRE 88.62 80.23 70.63

agrwl95 CSARF-g 90.83 75.83 81.22
agrwl95 CSARF-l 81.29 84.71 76.97

agrwl99 ARF 50.11 49.97 11.52

agrwl99 ARFRE 50.36 50.36 1.11

agrwl99 CSARF-g 63.08 54.64 11.73
agrwl99 CSARF-l 50.60 50.91 3.63

sea90 ARF 53.36 53.97 34.25

sea90 ARFRE 84.46 70.11 34.75
sea90 CSARF-g 83.02 69.27 34.29

sea90 CSARF-l 63.90 64.05 34.42

sea95 ARF 50.21 49.23 19.06

sea95 ARFRE 83.04 61.86 20.13
sea95 CSARF-g 76.16 61.28 19.07

sea95 CSARF-l 52.98 53.91 19.18

sea99 ARF 50 49.75 3.22

sea99 ARFRE 54.97 52.43 3.42
sea99 CSARF-g 59.42 52.18 3.12

sea99 CSARF-l 50.03 49.83 3.11

502



4.2 Empirical Analysis
From the obtained results, some interesting points are highlighted

w.r.t. the two strategies of assigning misclassification costs.

Predictive models may exhibit different behaviors for data sets

with similar levels of imbalances but different class separability.

In santd, we note that both versions of CSARF performed better

than ARF and ARFRE with significant gains. However, in the pozzl
experiment, ARF showed an interesting performance for a problem

where 99.82% of the examples are from the majority class. Even

so, the imbalance data-driven versions were notable because both

(ARFRE and CSARF) were able to perform better than ARF on the

average recall. In this case, the gain scale is smaller than the one

observed for the santd, but it is significant. It is also worthy of

highlighting that ARF alone performed better than its variants in

the AUC-PR metric with slightly higher performance than CSARF

versions.

When evaluating CSARF and ARFRE on low imbalance data,

i.e., elect and airli; we note that the performance gain is low. For

airli, CSARF versions performed even worse than the original ARF

version. However, as this is not a problem with a high degree of

imbalance, the increase in the minority class rating rate is not as

significant. Yet, when the cost involved in classifying one class into

another is high, using a classifier that can distinguish the minority

class from the others is crucial. This is clear in credit and privt
experiments, where CSARF and ARFRE performed better, especially

CSARF-g with better average recall and AUC-PR results in data set

credit.
The evaluation of the models with synthetic generators showed

that CSARF-g and CSARF-l perform better than other approaches

when the degree of imbalance intensifies. The exception is ARFRE,

which stands out with the best results in almost all unbalanced

scenarios using the SEA generator.

To verify if there is no statistically significant difference between

the CSARF, ARFRE, and the ARF is true, the Nemenyi test was per-

formed for each performance metric following the instructions of

[13]. The critical distance chart contains the method ranking, where

the lowest placement represents the best performing algorithm. For

a confidence level of 95%, the results suggest that CSARF-g is the

best among the other approaches evaluated in average recall and

that there is no significant difference between the last two ranks

(CSARF-l and ARF) and the first ones (CSARF-g and ARFRE) (Fig-

ure 1). One can verify that both CSARF-g and ARFRE performed

better than the ARF in this metric and there’s a significant differ-

ence between CSARF-g and ARF. In the average F1 metric (Figure

2), CSARF-l stands out with better performance and meaningfully

difference when compared with ARF. In this scenario, there is no

significant difference between the three last ranks (ARFRE, CSARF-g

and ARF). However, when evaluating the classifiers in the AUC-PR

metric (Figure 3), we noticed that there is no significant difference

between the performances of the evaluated methods. Even so, both

versions of CSARF ranked first in evaluating the classifiers in each

of the metrics. Even if the performance gain is apparently low, in im-

balanced datasets the gain in minority class prediction is significant

given its rarity.

1234

CD = 1.354

CSARF-g

ARFRE

CSARF-l

ARF

Figure 1: Critical differences chart for the Average Recall ob-
tained by all the CSARF variations, ARF and ARFRE.
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CSARF-l

ARFRE

CSARF-g

ARF

Figure 2: Critical differences chart for the Average F1 ob-
tained by all the CSARF variations, ARF and ARFRE.
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Figure 3: Critical differences chart for the AUC-PR obtained
by all the CSARF variations, ARF and ARFRE.

5 CONCLUSION AND FUTURE WORK
In this paper, an empirical study was presented on real and syn-

thetic imbalanced datasets. The used datasets present different

classification problems with different levels of imbalance. We com-

pared the performance of the traditional Adaptive Random Forest,

and one of its variants that perform data resampling, against our

proposed method that is based on misclassification cost. The com-

parative analysis between ARF, ARFRE, and CSARF made it possible

to evaluate the beneficial impact of the use of strategies based on

misclassification costs.

For future works, the objective is to analyze the CSARF perfor-

mance for non-binary classification tasks that also present imbal-

ance. In future work, the use of dynamic misclassification costs that

accompany the relevant changes of a data stream should be also be

assessed, both to change the classifier’s decision and to restate the

minority instances.
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