
Towards the Overcome of Performance Pitfalls in
Data Stream Mining Tools

Lucca Portes Cavalheiro
Graduate Program in

Informatics (PPGIa)
Pontifı́cia Universidade Católica do Paraná
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Abstract—Data stream mining is an essential task in today’s
scientific community. It allows machine learning models to be
updated over time as new data becomes available. Three pillars
should be accounted for when selecting an appropriate algorithm
for data stream mining: accuracy, processing time, and memory
consumption. To develop and assess machine learning models in
streaming scenarios, different tools have been developed, where
the Massive Online Analysis, written in Java, and scikit-multiflow,
written in Python, are in the spotlight. Despite the ease of use
of both tools, neither are focused on performance, which puts
in jeopardy the usage of the computational resources. In this
paper, we show that with the right tools, Python libraries reach
performance comparable to C/C++. More specifically, we show
how optimized implementations in scikit-multiflow using low-
level languages, i.e., C++, C++ with Intel Intrinsics, and Rust;
with bindings to Python vastly overcome existing tools in com-
putational resources usage while keeping predictive performance
intact.

I. INTRODUCTION

Nowadays, data is a valuable resource. As time passes and
the storage prices decrease, companies tend to accumulate
more and more data for further analysis. In this scenario, ma-
chine learning comes as a valuable tool to extract knowledge
from this enormous data mass. However, traditional machine
learning techniques (also referred to as batch machine learn-
ing) are not suitable for big datasets that are made available
over time. That is because most algorithms require loading the
whole dataset into memory, which is very often not possible
as the data is potentially unbounded. Thus, data stream mining
techniques were proposed to fill in this gap. Contrary to batch
machine learning, these algorithms process the instances once
at a time or in small chunks, thus updating their internal
models as new data becomes available. In seminal papers and
books related to data stream mining, three main pillars are
brought up for the development of novel techniques [1], [2]:

• Accuracy: algorithms should provide accurate responses
over time. This is important as the data distribution may
drift over time (concept drift), and machine learning
models should adapt accordingly so that accuracy is not
put in jeopardy.

• Processing time: algorithms should use a limited amount
of time to process each instance. If the processing time
scales up according to the arrival of new data, these are

TABLE I
TIME IN SECONDS (s) FOR EXECUTING NAÏVE BAYES, UNDER THE
PREQUENTIAL VALIDATION PROCEDURE [2], WITH THE SEA DATA

GENERATOR [4] WITH 100,000 INSTANCES.

MOA scikit-multiflow
0.2000 14.2303

expected to be buffered, which may culminate in system
crashes due to lack of RAM.

• Memory consumption: algorithms should be light-
weighted in terms of memory consumption. Similarly to
the processing time constraint, the size of models must
not increase indefinitely as new data becomes available.

To develop and assess machine learning models in streaming
scenarios, different tools have been developed. The first tool
is the Massive Online Analysis (MOA) [1], implemented in
Java, which has been the default option for implementing and
comparing methods in the past years. More recently, authors in
[3] proposed scikit-multiflow, which is still in its early stages
but depicts the potential for becoming the off-the-shelf solution
for new researchers and practitioners in the data stream mining
community. Despite the ease of use of both tools, neither are
focused on performance, which puts in jeopardy the usage of
the computational resources. For instance, when comparing
the processing time of scikit-multiflow to MOA, the latter is
significantly faster (approximately 71× faster), as shown in
Table I. We consider this an obstacle for scikit-multiflow to
acquire more active users and to fill in the processing time and
memory usage requirements, which are relevant when these
models are to be deployed.

In this paper, we compare and analyze the original im-
plementation in scikit-multiflow against three proposed im-
plementations of the same part in the low-level languages
C++ and Rust, with an interface for accessing the algo-
rithm in Python. More specifically, we have reimplemented
the Naive Bayes classification algorithm, the validation pro-
cess Prequential [2], and the data generators Streaming
Ensemble Algorithm (SEA) [4] and Random Radial Basis
Function (Random RBF). The source code for our imple-
mentation is made available at https://github.com/nbpaper/
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NaiveBayesImplementations.
This paper is divided as follows. Section II brings forward

related works on Python code optimization that is required
to understand our proposal. Section III layers the scope of
our code optimization, including classifiers, data generators,
validation procedures, as well as details on how our results are
conducted. Section IV discusses the results obtained. Finally,
Section V concludes this work and states envisioned future
works.

II. RELATED WORK

Python is naturally not a fast programming language, es-
pecially when compared to low-level languages such as C
and C++. However, this was not a requirement for Python. Its
dynamic-typed system and abstractions of fairly complicated
data structures prioritize easiness over speed. Nonetheless, this
does not mean that there are not ways of using Python for
high-performance computations.

The first and most used Python implementation for high
performance is CPython, written in C, as the name indicates.
That causes Python to bind to compiled libraries written in
low-level languages. One of the most used libraries in the
Python ecosystem is NumPy [5], a library for array processing
that takes advantage of bindings. NumPy is based on two
highly optimized libraries for array calculations written in C
and Fortran: BLAS (Basic Linear Algebra Subprograms) [6],
and LAPACK (Linear Algebra Package) [7].

With few lines of code, it is possible to demonstrate the
difference in processing time from pure Python to NumPy.
The first part of the code in Figure 1 generates a list of one
million random numbers in pure Python. The code below it
uses NumPy to achieve the same behavior. Table II present the
execution time difference (in seconds). NumPy, in this case,
performed approximately 7 times faster. These differences
serve as a basis on why libraries such as NumExpr [8] take
as input previously built arrays from Python or NumPy and
compute array operations swiftly.

Most of these libraries implemented in C/C++ take advan-
tage of Intel Intrinsics routines. These are assembly-coded
functions that provide access to highly optimized vector oper-
ations. The compiler converts these routines to SIMD (single

# Pure Python
r a n d o m l i s t = [ ]
f o r in range ( 1 0 0 0 0 0 0 ) :

r a n d o m l i s t . append ( random . random ( ) )

# NumPy
r a n d o m l i s t = np . random . r and (1000000)

Fig. 1. Code generating random list using pure Python and NumPy

TABLE II
TIME IN SECONDS (s) FOR GENERATING RANDOM LIST USING PURE

PYTHON AND NUMPY

Pure Python NumPy
0.2274 0.0321

instruction multiple data) instructions, which operate with the
whole vector simultaneously, which is called vectorization.
Besides, C/C++ compilers can automatically translate loops
into vectorized code, which is called auto-vectorization.

There are several sets of Intel Intrinsics routines, and as
CPUs are improved, more optimized functions are released
as Instruction Set Architecture (ISA) extensions to vectorize
the code. Modern CPUs maintain backward compatibility
with most of the previously released functions. However,
applications using newly released functions do not run in
older CPUs. When publishing a library that uses Intrinsics,
publishers must either specify CPU compatibility or provide
multiple implementations, with new and old sets, chosen at
compile time. Examples of ISA extensions are SSE (Streaming
SIMD Extensions), SSE2, AVX (Advanced Vector Exten-
sions), AVX2, and AVX 512.

There are initiatives in many compiled languages that allow
writing code that can be bound to Python. One of these is
PyO3 1, a library written in Rust that allows bidirectional
iteration, compiling Rust code so it can be imported from
Python and calling Python code from within Rust programs.
The orjson 2 library is an example of a Python library for
parsing JSON written in Rust which benefits from PyO3.

Another approach for increasing the Python code’s speed
is to transpile the Python code into C/C++ code, and sub-
sequently compile it into binary, and finally to import this
compiled version into another Python script. This method has
caveats. For instance, in order to expect a significant increase
in speed, in many cases, the programmer should give up the
dynamic typing convenience offered in Python. The most used
tools of this kind are Cython [9], and Numba [10].

Most of the popular Python-based software amongst the
scientific community uses one or more of the previously
explained approaches. For example, the data processing library
Pandas [11], and the machine learning framework scikit-learn
[12] use NumPy extensively in its internal calculations, as well
as Cython in critical parts. Many recently published papers
also take advantage of these tools. For example, the library
pyts [13], focused on time series classification, uses Numpy
and Numba in its implementation. Cornac [14], a library for
recommender systems, on the other hand, uses Cython (instead
of Numba) and Numpy.

III. THE SCOPE OF OUR OPTIMIZATION ANALYSIS

As stated in the introduction, we re-implemented specific
parts of the original scikit-multiflow code to obtain improved
performance. In the following sections, we provide a back-
ground on the classification model, data generator, and vali-
dation process used in this optimization analysis. Finally, we
bring insights on why this optimization is required given the
existing scikit-multiflow implementation.

1https://github.com/PyO3/pyo3
2https://github.com/ijl/orjson
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A. Naı̈ve Bayes

The Naı̈ve Bayes is a classification algorithm based on
the Bayes Theorem, given in Equation (1). This theorem
calculates the conditional probability of A happening, given
that B happened. Applying it to a classification problem, the
probability computed by Naive Bayes is of the set of features
x belonging to the class y. This is computed for each of the
classes.

P (A|B) =
P (B|A)× P (A)

P (B)
(1)

B. SEA Generator

The SEA generator generates data by creating a random
feature vector with tree elements {x1, x2, x3}, but only two
of them ({x1, x2}) contribute to classifying the instance. The
definition of the target feature follows a linear threshold, i.e.,
if x1 + x2 > θ then y = 1 and y = 0, otherwise. The value
of θ is variable and changing it in the middle of an algorithm
execution synthesizes a concept drift.

C. Random RBF Generator

The Random RBF generator works by drawing normally
distributed samples around previously created centroids. It
works by initially generating n centroids with a random
standard deviation associated. When an instance is generated,
a centroid is randomly chosen, and the attributes for the in-
stance are drawn from a normal distribution with the standard
deviation of the centroid. The class of the instance is the same
as of the centroid.

D. Prequential

The Prequential validation process combines and interacts
data generation with the classifier learning and testing pro-
cesses. In prequential, for each instance that arrives from the
stream (generator), the algorithm uses it first to test the model
and then train it. This order is essential because it guarantees
that the model is only evaluated against instances never trained
before.

Prequential works with integrated performance analyzers
that track how well the learning task is at a given moment. The
traditional metrics shown as output of Prequential are accuracy
and kappa. In this sense, n_wait is a vital parameter to define
the interval (number of instances) assumed between evaluation
metrics computation.

E. Challenges and Motivation

Even though scikit-multiflow uses NumPy in its code, many
of its inner usages are suboptimal. An example is given in
Figure 2, where the matrix y_proba is iterated row by row
and the argmax function is applied to each row, with its
output appended on the variable predictions. However,
with a simple call to a NumPy function, with the parameter
axis = 1, as shown in the bottom part of the same figure,
NumPy performs the same computation, yet, in an optimized
fashion. In order to illustrate this, Table III compares the
execution time on both pieces of code using as input a matrix

TABLE III
TIME IN SECONDS (s) FOR APPLYING THE ARGMAX FUNCTION IN A

RANDOM MATRIX USING PURE PYTHON AND NUMPY.

Pure Python NumPy
2.1245 0.1109

# Adapted from s c i k i t −m u l t i f l o w
p r e d s = [ ]
f o r i in y proba :

c l a s s v a l = numpy . argmax ( i )
p r e d s . append ( c l a s s v a l )

# Opt imal NumPy code
p r e d s = numpy . argmax ( y proba , a x i s =1)

Fig. 2. Code adapted from scikit-multiflow and its NumPy version.

of shape (1000000× 20) with random numbers ranging from
zero to one. The speedup is of approximately 19 times.

Nonetheless, as discussed in the previous sections, the
Prequential process works with a single instance at a time, and
this represents a problem for code optimization. Libraries such
as NumPy have overheads when initializing their arrays as the
memory must be allocated all at once to perform fast array op-
erations. This overhead is negligible when dealing with arrays
of a reasonable size. However, creating a NumPy array with a
unitary size per instance presents a significant overhead in the
execution. Because of this characteristic, trying to optimize
scikit-multiflow’s code by transcribing pure Python code to
use NumPy or NumExpr functions or correcting NumPy uses
such as in Figure 2, may not be the wisest solution. That is
why we choose to perform low-level implementations of the
selected parts.

F. Experiments Setup

For the re-implementation, the languages chosen were C++
(using structures from its standard library), C++ (using Intel
Intrinsics AVX for a faster array processing), and Rust (using
the ndarray library3). All of them provide and were called
using a Python interface. The option for C++ was because
of its widespread adoption in the Python community for
developing libraries that require fast processing. Rust was also
selected to compare a classical language’s speed, commonly
known for its performance, versus a more modern language,
which also targets performance.

Figure 3 provides a comparison between two sums of arrays
in order to exemplify the code difference between C++ with
its standard library versus C++ with Intel Intrinsics. The
functions are similar, but the basic difference lies in comparing
lines 6 and 15. While the code using the standard library
(line 5) iterates over the vectors of the type double and
individually sum its elements, the code using AVX use the
function _mm256_add_pd to sum vectors of type __m256d.
This type is an array that can store up to 32 bytes of memory,
which in this case is used for storing 4 doubles. All elements

3https://github.com/rust-ndarray/ndarray
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1 / / Using STD
2 v e c t o r<double> vec sum (
3 v e c t o r<double> v1 , v e c t o r<double> v2 ) {
4 v e c t o r<double> r e t ( v1 . s i z e ( ) ) ;
5 f o r ( auto i = 0 ; i < r e t . s i z e ( ) ; i ++)
6 r e t [ i ] = v1 [ i ] + v2 [ i ] ;
7 re turn r e t ;
8 }
9

10 / / Using AVX
11 v e c t o r< m256d> vec sum (
12 v e c t o r< m256d> v1 , v e c t o r< m256d> v2 ) {
13 v e c t o r< m256d> r e t ( v1 . s i z e ( ) ) ;
14 f o r ( auto i = 0 ; i < r e t . s i z e ( ) ; i ++)
15 r e t [ i ] = mm256 add pd ( v1 [ i ] , v2 [ i ] ) ;
16 re turn r e t ;
17 }

Fig. 3. Comparison of vector addition using C++ standard library versus C++
with AVX.

in one __m256d array are summed at the same time with the
function _mm256_add_pd.

We did not merely translate the algorithms from Python
into the proposed languages. We also redesigned them with a
focus on performance. Some features available in the original
implementation of scikit-multiflow were left out, such as
performance metric computers other than the accuracy and
support for multiple classifiers in Prequential.

We executed the experiments on a Linux Ubuntu 18.04.1
with Intel Core i5-3570 (Ivy Bridge) 3.40GHz with four cores
as CPU (although all the experiments use a single thread
only), 8 GB of main memory. No other jobs were executing
during experimentation. We executed two different sets of
experiments for accessing the impact on speed by increasing
the number of instances and features on each experiment.

For the experiments regarding the instance number, we used
the SEA generator. The number of instances generated at each
experiment varied from 20 to 100020, with a step of 5000. We
set the n_wait parameter as 1%, 5%, and 10% of the total
number of instances. For analyzing the number of features,
we used the Random RBF generator because its design allows
us to set up the number of features generated. The number of
features generated in this set varied from 2 to 102, with a step
of 5. The number of instances and the n_wait parameter
were set to 50000 and 2500, respectively. The Prequential
process was executed ten times for each implementation and
each experiment. The time was measured (in seconds) for each
execution, and the results reported are averages obtained across
the runs.

As memory efficiency is also an important part of data
stream mining, we also performed a memory usage analysis of
all the methods. For this test, a single execution of Prequential
was used with the SEA Generator with 100,000 instances and
n wait = 5000.

IV. RESULTS AND DISCUSSION

This section reports and discusses the results obtained in
terms of processing time and memory consumption.

Fig. 4. Comparison of processing time between proposed implementations
and original scikit-multiflow and MOA functions regarding number of in-
stances.

TABLE IV
MEAN TIME IN SECOND(S) FOR RUNNING THE EXPERIMENTS REGARDING

INSTANCES.

Instances Multiflow MOA C++ C++ AVX Rust
20 0.0039 0.0199 0.0003 0.0003 0.0003

50020 7.1149 0.1699 0.0700 0.0677 0.0642
100020 14.2713 0.2200 0.1400 0.1350 0.1284

A. Processing Time

The results regarding the instance number increase for
n_wait = 1% can be seen in Figure 4, where the y axis
displays in logarithmic scale the execution time (in seconds)
and the x axis presents the number of instances. All of the
proposed optimized implementations performed similarly, and
it is evident that the proposed implementations are signif-
icantly faster than the original scikit-multiflow and Java’s
implementation provided in MOA.

Table IV shows the average processing time of the exe-
cutions for 20, 50020 and 100020 instances. As before, the
improvement provided by the implementations in low-level
languages is clear. With 100020 instances, the implementations
in C++, C++ with AVX, and Rust outperformed the original
implementation by roughly 102, 105, and 111 times, respec-
tively, while MOA’s implementation was 65 times faster.

When comparing the proposed implementations solely
against MOA (again with 100020 instances), the C++ imple-
mentations without and with Intel intrinsics were 1.57 and
1.62 times faster, respectively. We also observe that the Rust
implementation was 1.71 times faster.

Figure 5 shows the results for the experiments concerning
the increase of features, where the y axis displays in loga-
rithmic scale the execution time (in seconds) and the x axis
presents the number of features. It is clear that there is an
inflection point in which the number of features that causes
the AVX vectorization to outperform the C++ implementation
with STL. The vectorization was performed on the features
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level, and it has a cost, so this behavior was expected. More
specifically, the improvements caused by vectorization are
higher when array sizes are increased, rendering the cost of
vectorization setup negligible.

As for the direct comparison of the processing times, Table
V shows the average processing times for 2, 52, and 102
features. Compared to scikit-multiflow with 102 features, the
C++ (STD) implementation was 92 times faster, while using
Intel Intrinsics the number was 147 times. Rust was again
the best performant choice, running 155 times faster. On the
other hand, MOA’s implementation was 92 times faster than
scikit-multiflow’s original code.

Comparing our implementations with MOA (with 102 fea-
tures), C++ With Intel intrinsics and Rust performed 1.60
times faster and 1.68 times faster, respectively. The C++
implementation with its standard library is virtually tied with
MOA.

B. Memory Usage

Figure 6 shows the memory usage for all the implemen-
tations over time, where the x axis denotes the processing
time normalized from 0 to 1 and the y axis is the memory
usage in megabytes (MB). It is evident that all of the proposed
implementations used considerably less memory than MOA
and scikit-multiflow. But it is worth noting that even though
scikit-multiflow used more memory than MOA, as it is shown
in Table VI, it presented a more consistent usage over time.
The observed behavior for MOA in Figure VI, i.e., the memory
consumption considerably increasing as new instances arrive,

Fig. 5. Comparison of processing time between proposed implementations
and original scikit-multiflow and MOA functions regarding number of fea-
tures.

TABLE V
MEAN TIME IN SECONDS (s) FOR RUNNING THE EXPERIMENTS

REGARDING FEATURES

Features Multiflow MOA C++ C++ AVX Rust
2 11.2802 0.1559 0.0748 0.0976 0.0697

52 39.5166 0.4470 0.4053 0.2788 0.2519
102 67.2595 0.7300 0.7298 0.4551 0.4329

Fig. 6. Comparison of memory usage between proposed implementations and
original scikit-multiflow and MOA.

TABLE VI
MAXIMUM MEMORY USAGE (MB) FOR RUNNING PREQUENTIAL WITH

100,000 INSTANCES GENERATED BY THE SEA GENERATOR.

Multiflow MOA C++ C++ AVX Rust
148.8085 63.8750 8.7343 10.4531 10.0039

is not sustainable for an enormous and potentially quantity of
instances.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we conclude that a high-performance and
memory-efficient Python library for mining streams of data
is achievable. All the low-level implementations proposed out-
performed the original scikit-multiflow implementation written
in Python and Massive Online Analysis (MOA) implementa-
tion in Java.

The least performant of the proposed implementations was
with C++ using elements from its standard library. This was
an expected result because these elements provide a high level
of abstraction for dealing with data structures. This provides
great help for dealing with complicated algorithms easily, but
it comes with a performance cost, which can be observed in
the results.

The C++ implementation with Intel Intrinsics and the
Rust implementations were very close, with Rust performing
slightly better. The result for C++ with AVX was expected
because the AVX routines are very efficient in vector process-
ing. The explicit vectorization had better performance with
a larger feature array. Rust also presented a good speedup
because, besides being also an extremely low-level language,
its internal libraries also abstract types of vectorization. This
result is interesting because it showed that Rust has good
potential for serving as a backend for Python libraries. As Rust
is a more recent language, it provides some facilities related
to memory management that C++ does not provide while also
contributing to faster coding time.
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As for the comparison with MOA, all of our implementa-
tions outperformed it regarding the number of instances and
features. Moreover, since MOA is open-source and widely
adopted by the scientific community, we believe that this is
a gap that should be addressed in future works and imple-
mentations so that processing time and memory consumption
constraints are not violated when models are deployed.
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