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a b s t r a c t 

Learning from ephemeral data streams has garnered the interest of both researchers and practitioners to- 

wards adaptive learning techniques. Despite the convincing results obtained thus far, most of the current 

research still overlooks that the relevance of features may change throughout the learning process. Sce- 

narios where features become - or cease to be - relevant to the learning task are called feature drifting 

data streams, and the identification of which features are relevant becomes even more challenging when 

the feature space is high-dimensional. To select relevant features during the progress of data streams, we 

propose a merit-guided and classifier-independent dynamic feature selection algorithm named DynamIc 

SymmetriCal Uncertainty Selection for Streams (DISCUSS). We evaluate our proposal on both synthetic and 

real-world datasets and show that DISCUSS can boost kNN and Naive Bayes classifiers’ accuracy rates on 

high-dimensional data streams, while at the expense of limited processing time and memory space. Fi- 

nally, the drawbacks of the proposed method are assessed, and possible future works on the topic are 

also discussed. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Every day, companies and individuals gather enormous

mounts of data at increasing rates. Most of these data are

enerated sequentially from different sources and are so mas-

ive that their storage would neither be practical, intelligible,

or useful. Much effort has been directed towards mining these

otentially infinite sequences of data, and this area is commonly

eferred to as data stream mining. 

By far the most widely researched task on data stream mining

s classification. Data stream classification, or online classification,

egards the problem of learning a model that is capable of pre-

icting a nominal value given a feature vector. Despite being light-

eighted regarding both processing time and memory usage, novel

earning proposals must tackle the ephemeral property of streams,

amely concept drift . 

As described in the seminal work of Widmer and Kubat (1996) ,

ata streams are susceptible to different types of drifts: (i) changes

n the characteristic feature values, (ii) evolution of the value do-
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ains of features over time, or (iii) features that were once rele-

ant and that now may become meaningless or the other way around ,

nd so on. In this paper, we target the above-emphasized type of

rift, called feature drift . Feature drift occurs when a subset of

eatures becomes, or ceases to be, relevant to the learning task

 Barddal, Gomes, Enembreck, & Pfahringer, 2017 ). 

To maintain an accurate predictive model on a data stream that

xhibits feature drifts, a classifier must be trained and updated on

he subset of features that is currently relevant. Feature selection

s crucial in these scenarios since the goal is to retain the relevant

ubset of features of a data set. Naturally, identifying and keep-

ng track of which features are relevant in high-dimensional data

treams turn the problem even more complex, as the data becomes

ore sparse and computationally prohibitive. Therefore, perform-

ng feature selection over high-dimensional data streams is still an

pen research topic since the majority of existing feature selection

lgorithms require multiple passes over data ( Barddal et al., 2017 ).

n addition to feature drifts, our proposal is also tailored for tack-

ing redundant features . Redundant features are problematic as they

rovide an extra and unnecessary computational cost for both stor-

ge and processing, and make classifiers more prone to overfit ( Yu

 Liu, 2003 ). Therefore, feature selection should also identify and

liminate redundant features during learning. 
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This paper introduces a novel dynamic feature selection method

for data streams named DynamIc SymmetriCal Uncertainty Selection

for Streams (DISCUSS). DISCUSS’s core is built on top of the sym-

metrical uncertainty operator ( Witten & Frank, 2005 ), a concept

coming from Information Theory. DISCUSS follows the procedure

earlier introduced in Barddal, Gomes, Enembreck, Pfahringer, and

Bifet (2016a) to swiftly compute symmetrical uncertainty between

each feature and the class over sliding windows, and thus, acting

as a filter, it can dynamically select features as the stream pro-

gresses. The central claim on proposing DISCUSS is that it will dy-

namically check the importance of features w.r.t. class prediction,

while also identifying redundant ones. Given that, DISCUSS will

continuously try to maximize a merit function that aims the maxi-

mization of feature relevance while decreasing feature redundancy.

As a result, classification models should be learned within smaller

dimensionalities, also prospectively resulting in smaller processing

times and memory consumption rates. The main contributions of

this work are as follows: 

• The proposal of a novel dynamic feature selection algorithm for

data streams. 
• The evaluation of the proposed method with different classi-

fiers and several high-dimensional feature drifting data streams.

These experiments highlight that all Naive Bayes, kNN and De-

cision Tree classifiers’ accuracy rates suffer from mild increases

in dimensionality, while DISCUSS allows all of them to over-

come drifts in such scenarios; and 

• A discussion on the main shortcomings of the proposed method

and open gaps that should be assessed by the data stream min-

ing community in future works. 

This paper is structured as follows. Section 2 introduces

the data stream classification and concept drift problem.

Section 3 states the problems we intend to assess: feature

drifts and redundant features . Section 4 surveys related works

on feature drift adaptation, also highlighting which are used in

our analysis. Section 5 describes our proposed dynamic feature

selection algorithm, which is later evaluated in Section 6 . Finally,

Section 7 concludes this paper and states envisioned future works.

2. Data stream classification 

In this paper, we focus on the streaming classification task,

which regards learning and updating predictive models over time.

Formally, we denote S to be a stream of instances in the i t =
( � x t , y t ) form, where t is the arrival timestamp, � x ∈ X is a vector

of features that are possibly categorical, numeric or most likely

mixed, and y t ∈ Y the class. To denote the D j -th feature of an in-

stance x t , we adopt the x t 
j 

notation, where t will be dropped

throughout this paper when unnecessary, and the entire feature

set is denoted by D = { D 1 , D 2 , . . . , D d } . Given S, the classification

goal is to learn and update a model f : X → Y over time. Updates

f t = f t−1 ± � can be either incremental, if the underlying patterns

obtained from incoming instances adhere to the current concept;

or decremental, for example, when a concept drift occurs. Gener-

ally speaking, the underlying concept C of a stream is a set of prior

probabilities of the classes and class-conditional probability den-

sity functions ( Nguyen, Woon, Ng, & Wan, 2012 ): 

 = 

⋃ 

y i ∈ Y 
{ (P [ y i ] , P [ � x | y i ]) } (1)

Given S, instances will be labeled according to the current con-

cept C t . If between two timestamps t i and t j > t i it follows that

 

t i � = C t j , then we have a concept drift ( Webb, Hyde, Cao, Nguyen,

& Petitjean, 2016 ). Another important categorization for concept

drifts regards their length: if C t i � = C t i +1 the drift is said to be
brupt, while if C t i � = C t i +� with �> 1 occurs, the drift is called

radual. 

. Problem statement 

In this section, we focus on the two issues we aspire to tackle

ith our proposal: feature drifts and redundant features . To for-

alize both issues, we first need to categorize features into three

ypes: relevant, irrelevant and redundant; where the first two are

ssential to introduce feature drifts, and the last should be as-

essed independently. 

As stated in Rudnicki, Wrzesie ́n, and Paja (2015) , there do exist

ifferent relevance definitions available in the literature, yet, some

ay be contradictory and misleading. In this work a combined def-

nition of relevance is used, given by Definitions 1 and 2 proposed

n Kohavi and John (1997) . First, strong relevance occurs when a

eature is indispensable in the sense that it cannot be removed

ithout losses in prediction accuracy, whereas weak relevance im-

lies that a feature may contribute to prediction accuracy. 

efinition 1. (Strong relevance) Assuming S i = D \ { D i } , a feature

 i is strongly relevant iff there exists some q (one of the possible

utcomes for a feature D i ), y and s i for which P [ D i = q, S i ] > 0 such

hat the following holds: 

 [ Y = y, | D i = q, S i = s i ] � = P [ Y = y, S i = s i ] (2)

efinition 2. (Weak relevance) A feature D i , will be considered as

eakly relevant iff Definition 1 does not hold, and there exists a

ubset of features S ′ 
i 
⊂ S i for which exists some q, y and s ′ 

i 
with

 [ D i = q, S ′ 
i 
= s ′ 

i 
] > 0 such that the following holds: 

 [ Y = y, | D i = q, S ′ i = s ′ i ] � = P [ Y = y, S ′ i = s ′ i ] (3)

therwise, D i is said to be irrelevant . 

According to these definitions, the removal of a feature that is

tatistically relevant from a feature subset will result in a reduc-

ion of prediction power. This definition encompasses two possibil-

ties for a feature to be relevant: (i) it alone is strongly correlated

ith the class ( Kohavi & John, 1997 ); or (ii) it forms a feature sub-

et with other features that together are correlated with the class

 Zhao et al., 2010 ). 

Most of the research on concept drift adaptation assumes that

hanges in the data distribution occur inside the skewness of the

lasses in ranges of features’ values. Feature drifts are a different

ype of problem, where entire features become, or cease to be,

elevant to the concept to be learned. This type of changes forces

he learning algorithm to adapt its model to ignore the irrelevant

eatures and account for the newly relevant ones ( Nguyen et al.,

012 ). 

efinition 3. (Feature drift) Given a feature space D at a times-

amp t , we are able to select the ground-truth relevant subset

 

∗
t ⊆ D such that ∀ D i ∈ D 

∗
t either Definitions 1 or 2 hold, and

 D j ∈ D \ D 

∗
t the same definitions do not. A feature drift occurs if,

t any two time instants t i and t j = t i + �, D 

∗
t i 

� = D 

∗
t j 

is verified. 

Like other types of drifts, changes in the relevant subset of fea-

ures affect the ground-truth decision boundary to be learned by

he classifier. It enforces learning algorithms to detect changes in

 

∗, discerning between features that became irrelevant and the

nes that are now relevant and vice-versa. Finally, it is necessary

o either (i) discard and learn an entirely new classification model;

r (ii) adapt the current model to relevance drifts ( Nguyen et al.,

012 ). 

Besides tracking relevance, another essential property of fea-

ures is redundancy. Redundancy notions are given using feature
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orrelation terms. It is common sense that two features are redun-

ant to a concept if their values are correlated. Redundant features

re problematic as they provide an extra computational cost for

oth storage and processing and make classifiers more prone to

verfit ( Yu & Liu, 2003 ). Therefore, feature selection should also

dentify and eliminate redundant features during learning. 

efinition 4. (Redundant Feature) Assuming S i = D \ { D i } , a fea-

ure D i is redundant iff

 [ Y | S i ] ≈ P [ Y | D i , S i ] (4)

According to Definition 4 , a feature is redundant if there is an-

ther feature, or set of features, that yield similar prediction power.

everal studies proposed the removal of redundant features as this

ight improve prediction accuracy since fewer features often lead

o less over-fitted models ( Hall, 20 0 0; Park, 2013 ), while others no-

iced that the removal of this type of feature might cause the ex-

lusion of potentially relevant features ( Guyon, 2003 ). 

. Related work 

Determining which features are relevant is a problem that has

een widely tackled in batch machine learning. However, the same

annot be said about streaming environments. As depicted in re-

ent surveys on the topic ( Barddal, Gomes, & Enembreck, 2015;

arddal et al., 2017 ), there are few works that explicitly tackle

he problem of drifting features. They can be categorized into: de-

ision trees ( Bifet & Gavaldà, 2009; Domingos & Hulten, 20 0 0 ),

ule learning ( Almeida, Ferreira, & Gama, 2013 ) and ensembles

 Abdulsalam, Skillicorn, & Martin, 2011; Nguyen et al., 2012 ). As

he result of an evaluation process using a multitude of exper-

ments, authors in ( Barddal et al., 2017 ) concluded that a sin-

le adaptive decision tree, namely Hoeffding Adaptive Tree (HAT)

 Bifet & Gavaldà, 2009 ) was the best performing classifier w.r.t. the

rade-off between classification rates, processing time and memory

sage. 

The HAT algorithm is an extension to the incremental Very Fast

ecision Tree classifier ( Domingos & Hulten, 20 0 0 ), which uses the

Daptive sliding WINdow (ADWIN) drift detector ( Bifet & Gavaldà,

007 ) inside decision nodes to monitor the internal error rates of

he tree. When a drift is flagged by a decision node, the entire sub-

ree is reset, and the tree starts re-learning. This allows the HAT

lassifier to detect and overcome feature drifts since changes will

ffect how good a split on a feature is and this will be detected by

DWIN. After each flagging, the tree is then able to replace this de-

ision stump by a new one that will eventually branch on a newly

elevant feature after the drift. Yet, it is worthy to highlight that

oeffding Adaptive Trees have not been studied as feature selec-

ors in feature drifting scenarios, which may be cumbersome since

he ADWIN drift detector is known for flagging a reasonable num-

er of false positives, thus rendering the tree structure too volatile

ven during stationary regions of streams. 

More recently, Barddal et al. (2016a) proposed a dynamic

eighting scheme for the problem of classification over data

treams. Their proposal dynamically computes the discriminative

ower of each feature using the symmetrical uncertainty scoring

perator ( Witten & Frank, 2005 ) over sliding windows. The dis-

riminative power of each feature was used as a weighting factor

n the prediction process of both k-Nearest Neighbors and Naive

ayes classifiers. This weighting scheme resulted in accuracy gains,

hile at the expense of reasonable additional processing time and

emory usage rates. Furthermore, the weighted versions of these

lassifiers were used at the leaves of HAT to marginally improve

ts prediction rates, again at the expense of limited additional pro-

essing time. 
At this point, it is important to highlight that the proposal pre-

ented in the current paper follows the same sliding window pro-

edure to calculate the symmetrical uncertainty between the fea-

ures and the class. Nevertheless, in contrast to the procedures

n ( Barddal et al., 2016a ), these scores are used for feature selec-

ion instead of feature weighting. Details of the computation of

ymmetrical uncertainty over sliding windows and the proposed

ethod are discussed in Section 5 . We also highlight at this point

hat the proposed method is different from the one presented

n Barddal et al. (2017) , as the method proposed here computes

tatistics along sliding windows instead of landmarks and embeds

edundancy checks. 

Finally, it is also worth to mention that the study of feature

rifts has also been recently investigated in the context of regres-

ion, such as in the work of Duarte and Gama (2017) , yet, regres-

ion is out of the scope of this paper. 

. DISCUSS 

This section introduces a novel dynamic filter for feature se-

ection from data streams, namely DynamIc SymmetriCal Uncer-

ainty Selection for Streams (DISCUSS). DISCUSS has as its core the

ymmetrical uncertainty scoring operator ( Witten & Frank, 2005 ),

hich is used to quantify how important a feature is w.r.t. class

rediction over a sliding window and whether a pair of features

s redundant. Computing symmetrical uncertainty scores over data

treams is not trivial as it was originally formulated for the batch

etting. Section 5.1 is devoted to the formulas and discretization

echniques required to allow symmetrical uncertainty computation

long data streams. This section follows the framework earlier pre-

ented in Barddal et al. (2016a) , where sliding window entropy and

ymmetrical uncertainty computation procedures have been used

or feature weighting processes and is extended in this paper with

he goal of feature selection. Next, Section 5.2 introduces DISCUSS,

hich has its merit-guided sequential feature selection procedure

etailed in Section 5.3 . 

.1. Background 

Several metrics were proposed and used to quantify how “rel-

vant” a feature is to predict class labels. Examples include Pear-

on’s ( Pearson, 1920 ) and R 2 coefficients of determination which

easure the variance of class prediction, assuming a linear re-

ationship. Alternatively, ideas from Information Theory are em-

loyed, usually the notion of entropy ( Shannon, 1948 ). The main

enefit of using Information Theoretic metrics is that they allow

or the detection of both linear and non-linear correlations be-

ween variables. 

efinition 5. (Entropy) Given a discrete random variable X , its en-

ropy is given by: 

(X ) = −
X ∑ 

x i 

P [ X = x i ] log 2 P [ X = x i ] (5) 

here x i iterates through all possible values of X . 

efinition 6. (Conditional entropy) Conditional entropy quantifies

he amount of information necessary to describe the outcome of

 random variable Y given that the value of another random vari-

ble X is known. Eq. (6) depicts its computation, where H(Y | X ) = 0

ccurs if Y is completely determined by X , while H(Y | X ) = H(Y )

olds if X and Y are independent random variables. 

(Y | X ) = −∑ X 
x j 

P [ X = x j ] × H(Y | X = x j ) 

= −∑ X 
x j 

P [ X = X j ] ×
∑ Y 

y i 
P [ Y = y i | X = x j ] ×

log 2 P [ Y = y i | X = x j ] 

(6) 
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Algorithm 1: Entropy computation over sliding windows 

( Sovdat, 2014 ). 

input : a sequence of values x 1 , . . . , x t for a discrete 
random variable X . 

output 
: 

be ready to provide the entropy h at any time. 

1 n ← 0 ; /* the counter of values stored in the 
window. */ 

2 n i ← 0 ; /* the counter of values stored in the i th 

partition of X */ 
3 h ← 0 ; /* The entropy of X */ 
4 Enqueueing of a value x t that belongs to the i th partition 

of X 

5 n ← n + 1 ; 
6 n i ← n i + 1 ; 

7 h ← 

n −1 
n 

(
h − log 2 

n −1 
n 

)
− n i 

n 
log 2 

n i 
n 

+ 

n i −1 

n 
log 2 

n i −1 

n 
; 

8 Dequeueing of a value x t that belongs to the i th partition 

of X 

9 n ← n − 1 ; 
10 n i ← n i − 1 ; 

11 h ← 

n +1 
n 

(
h + 

n i +1 

n +1 
log 2 

n i +1 

n +1 
− n i 

n +1 
log 2 

n i 
n +1 

)
+ log 2 

n 
n +1 

; 

o  

e  

s  

d  

t

 

P  

s

One problem with entropy is that it is biased towards features

with more distinct values. For instance, let us assume a data set

that contains an unique identifier feature. In this case, each iden-

tifier would be associated with a single class value, and thus, the

entropy would be optimal, i.e., zero. This is an extreme case, which

indicates that the identifier is an uninteresting feature since it fails

to provide any insights for predicting the class. 

Entropy is the basis for more refined metrics. For instance,

entropy can be used to compute Information Gain ( IG (X, Y ) =
H(X ) − H(X| Y ) ), a popular choice for learning decision trees. An

important trait of Information Gain is that it is symmetrical, i.e.

IG (X, Y ) = IG (Y, X ) . To prove it, one needs to verify that H(X ) −
H(X| Y ) = H(Y ) − H(Y | X ) and this can be derived from H(X, Y ) =
H(X ) + H(Y | X ) = H(Y ) + H(X| Y ) . 

However, similar to entropy, information gain is also biased to-

wards features with more distinct values. Therefore, different met-

rics that compensate for this bias are preferred in feature selection,

and an example is the symmetrical uncertainty ( Nguyen, Woon, &

Ng, 2014; Zamani-Dehkordi, Rakai, & Zareipour, 2017 ). 

Definition 7. (Symmetrical uncertainty) The symmetrical uncer-

tainty between two discrete random variables X and Y is given by:

SU(X, Y ) = 2 

[
IG (X, Y ) 

H(X ) + H(Y ) 

]

= 2 

[
H(Y ) − H(Y | X ) 

H(X ) + H(Y ) 

] (7)

Symmetrical uncertainty values lie within the [0; 1] interval,

where 1 indicates that the value of a variable completely predicts

the other, while 0 indicates that X and Y are completely indepen-

dent. 

For this metric to be used in streaming scenarios, its computa-

tion should be both efficient and adaptive so that it allows meth-

ods to “forget” old concepts and swiftly adhere to the new ones.

Luckily, the computation of symmetrical uncertainty depends on

entropies, and these have been calculated along sliding windows

in the works of Barddal et al. (2016a) and Sovdat (2014) . 

By definition, in sliding window models, only the most recent

data obtained from a data stream is stored in a FIFO (first in, first

out) data structure. Therefore, this structure only considers infor-

mation from the current instant up to a certain period in the past

( Silva et al., 2013 ). The organization and manipulation of objects

inside this structure follow the principles of queue processing. 

Given that, to update the symmetrical uncertainty for a fea-

ture D i to the class Y , one must keep track of H ( D i ), H ( Y ) and

H ( Y | D i ) entropies. Both H ( D i ) and H ( Y ) can be updated following

Algorithm 1 , while H ( Y | D i ) can be broken down into several con-

ditional entropies in the H(Y | D i = q ) form, which can also be com-

puted by the same algorithm. The proofs for the formulas used in

Algorithm 1 can be found at Sovdat (2014) . 

5.1.1. Discretizing numeric features 

One of the drawbacks of adopting entropy-based metrics as a

scoring operator is that numeric features must be discretized. Dis-

cretizing numeric variables in which their minimum and maxi-

mum values are a priori unknown is difficult, and thus, specific

techniques shall be used for this purpose. 

In this work, a two-layer histogram strategy is proposed as

an extension to the Partition Incremental Discretization algorithm

(PiD) ( Gama & Pinto, 2006 ), hereafter referred as Partition Adaptive

Discretization (PaD). In the first layer, PaD constructs and main-

tains equal-width bins that summarize the values provided by a

stream. Given the partitions computed in the first layer, whenever

a partition is accentuated compared to others, PaD’s second layer
f partitions is reconstructed, following an equal frequency strat-

gy. In contrast to PiD, PaD updates its internal counters along a

liding window. This is required as bins should reflect the same

ata stored in DISCUSS’ sliding window, which is used to keep en-

ropy values up-to-date. 

Algorithm 2 depicts the pseudocode for PaD. Similarly to PiD,

Algorithm 2: Partition Adaptive Discretization (PaD) 

pseudocode, which is inspired by Gama’s PiD ( Gama & 

Pinto, 2006 ). 

input : a stream of numeric values S that correspond to a single 
feature D i , the number of partitions F and the sliding 
window size w . 

output : be able to provide at any moment F equal-width bins: 
sLayer. 

1 Let f Layer ← ∅ be the histogram for the 1st layer; 
2 Let sLayer ← ∅ be the histogram for the 2nd layer; 
3 Let V ← ∅ be a sliding window; 

4 foreach x t ∈ S do 
5 mustReconstruct ← F ALSE ; /* flag for second layer 

reconstruction */ 
6 V ← V ∪ { x t } ; 
7 if | V | > w then 
8 Dequeue oldest element x t−w from V ; 

/* Increment and decrement both layers with the arriving 
and dequeued values */ 

9 Update the 1st layer using x t and x t−w ; 

10 Update the 2nd layer using x t and x t−w while finding the new 

counts of the updated partitions c a and c b ; 
/* Checks if we need to reconstruct the second layer */ 

11 if c a > (1 + α) × T max or c a < (1 − α) × T min or 
c b > (1 + α) × T max or c b < (1 − α) × T min then 

12 mustReconstruct ← T RUE; 

13 else if | V | = w then 
/* first window is complete, and thus, both layers are 

constructed */ 
14 buildF ir stLayer () ; 
15 mustReconstruct ← T RUE; 

16 if mustReconstruct then buildSecondLayer() ; 

aD’s first layer summarizes data, while the second layer con-

tructs the final histogram. 
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Algorithm 3: Pseudocode of the proposed filter during the 

training phase. 

input : a data stream S that provides instances i t = ( � x t , y t ) and a buffer 

size w . 

1 Let W ← ∅ be a queue that maintains a sliding window with length w ; 

2 Let expert be a classifier; 

3 D ′ ← ∅ ; /* Subset of selected features */ 
4 D baseline ← NULL ; /* Baseline feature */ 
5 foreach i t = ( � x t , y t ) ∈ S do 

6 if | W | = w then 

7 W ← W ∪ { i t } ; 
8 Increment the SU(·, ·) values ∀ D i ∈ D, SU(D i , Y ) with i t ; 

9 if | W | > w then 

10 Dequeue the oldest instance i t−w −1 from W ; 

11 Increment the SU(·, ·) values ∀ D i ∈ D, SU(D i , Y ) given i t−w −1 ; 

12 f lag ← F ALSE; 

13 foreach D i ∈ D \ { D baseline } do 

14 if (SU(D i , Y ) > SU(D baseline , Y ) and D i / ∈ D ′ ) or 

(SU(D i , Y ) < SU(D baseline , Y ) and D i ∈ D ′ ) then 

/* This condition is satisfied when a feature either 
(i) becomes ‘relevant’ and surpasses D baseline , or 
(ii) turns ‘irrelevant’ and has its SU w.r.t. the 
class now below D baseline ’s */ 

15 f lag ← T RUE; 

16 break ; 

17 if f lag then 

18 (D ′ , D baseline ) ← select F eat ures (D) ; /* Selects new features 
and defines a new baseline feature based on Algorithm 4 
*/ 

19 expert.reset() ; /* Resets the learner */ 
/* Starts the learning of a new model with the instances 

in buffer given the newly selected features in D ′ */ 
20 foreach i ′ ∈ W do 

21 i ′ = ext ract (i ′ , D ′ ) ; 
22 expert .t rain (i ′ ) ; 

23 else 

24 i ′ ← ext ract (i t , D ′ ) ; 
25 expert .t rain (i ′ ) ; 

26 else 

/* Condition met during the first w instances obtained from 
S. */ 

27 W ← W ∪ { i t } ; 
28 Increment the SU(·, ·) values ∀ D i ∈ D, SU(D i , Y ) with i t ; 

29 if | W | = w then 

/* Selects the first subset of relevant features given 
the instances stored in W and also sets a baseline D ′ 
that will be used during the main loop. */ 

30 (D ′ , D baseline ) ← select F eat ures (D) ; 
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PaD’s first layer maintains an equal-width histogram compati-

le with the values present in a sliding window. The challenging

ecision here is how to determine an appropriate width for this

ayer, and this is solved after the sliding window is filled with data:

iven the sliding window of values V , the width will be equal to
1 

max (V ) −min (V ) 
. After the initial computation of the first layer, arriv-

ng values are used to increment the first layer histogram, while

equeued values are used to decrement the same histogram. De-

ails on the construction of the first layer and how it is updated

an be found in Gama and Pinto (2006) . 

The second layer is reconstructed whenever a “significant”

hange is detected in the first layer. Given two thresholds T min and

 max , which are the minimum and maximum frequencies of all ex-

sting partitions, the second layer of PaD is reconstructed when-

ver a partition with a frequency above (1 + α) × T max or below

(1 − α) × T min is observed. As noticed by Gama and Pinto (2006) ,

he choice of α is not trivial, however, α = 1% seemed reasonable

n PiD’s original experiments, and the same value is adopted here. 

The construction of PaD’s second layer is straightforward. Given

ome partitions F and the sliding window size w , each partition

n the second layer will possess approximately w 

F frequency and

ccurrences of the same value are stored in the same partition. The

econd layer is constructed linearly by traversing and aggregating

he first layer bins until a w 

F frequency is reached. More details

bout the construction of the second layer and how it is flagged

or reconstruction can be found in Gama and Pinto (2006) . 

In the following experiments, the classic rule of thumb that

umeric features are discretized into F = 10 equal-frequency par-

itions is followed ( Boulle, 2005 ), but a deeper analysis on this

hoice is presented in Section 6.3 . 

.2. Overview 

In this section, we present the overall functioning of the DIS-

USS filter. The pseudocode of DISCUSS is reported in Algorithm 3 ,

hich consists of (i) updating the necessary entropies for symmet-

ical uncertainty computation between each feature and the class

lines 9–11); (ii) a baseline comparison (lines 13–16); (iii) a se-

ection procedure; and (iv) a redundancy check (both detailed in

lgorithm 4 ). 

As input, DISCUSS receives a data stream S and the buffer size

 . First, DISCUSS retrieves the first w instances from S to incre-

ent the symmetrical uncertainty of each feature w.r.t. the class,

.e., SU(D i , Y ) , D i ∈ D (lines 26–30). This process is repeated un-

il the DISCUSS buffers w instances, and then it selects the first

ubset of features D 

′ and the baseline feature D baseline is chosen

line 30). From this point on, DISCUSS operates over its buffer W

s a sliding window (lines 6–25), where the symmetrical uncer-

ainty scores SU(D i , Y ) , D i ∈ D are updated as new instances be-

ome available and others are forgotten (lines 7–11). We also high-

ight that the updates in the symmetrical uncertainty scores be-

ween each feature and the class can be performed in parallel, yet,

he pseudocode and implementation discussed in this paper are

equential. This is relevant since DISCUSS can be applied to high

imensional data and its computational overhead regarding pro-

essing time (see Section 6 , and more specifically, the SPAM exper-

ment in Section 6.5 ) can be significantly reduced. 

Followed by the symmetrical uncertainty updates, features are

ompared to verify whether a feature that was irrelevant has now

urpassed the baseline feature D baseline or a feature that was rel-

vant had its discriminant power decreased and is now below

 baseline (lines 12–16). If either of the conditions above is observed,

 new feature selection is triggered (lines 17–25), or otherwise, the

lassification model is updated using the arriving instance (lines

4–25). Whenever new features are selected, the classifier is also

eset and re-trained with the instances stored in the buffer using
nly the newly-selected features (lines 19–22). Finally, during the

rediction step, DISCUSS returns the current subset of selected fea-

ures D 

′ and filters the instance before the actual prediction is per-

ormed by the classifier. 

.3. Merit-Guided sequential feature selection 

DISCUSS adopts a merit-guided sequential feature selection

trategy, which is inspired by the Correlation-based Feature Selec-

ion (CFS) algorithm introduced in Hall (20 0 0) . 

efinition 8. (Merit of a feature subset) The merit of a feature

ubset D 

′ with cardinality n is given by Eq. (8) , where the numer-

tor describes how predictive of a class a group of features is, and

he denominator depicts how much redundancy there is amongst



232 J.P. Barddal et al. / Expert Systems With Applications 116 (2019) 227–242 

Algorithm 4: Selection scheme for the merit-guided selection 

procedure. 

input : the feature set D and the number of attempts for merit 

improvement nMaxAt tempt s . 

output : the selected features D ′ and the baseline feature D baseline 

1 Sort D in descending order of SU(·, Y ) ; 
2 D ′ ← ∅ ; /* set of selected features */ 
3 M ← 0 ; /* the best metric value obtained */ 
4 sRele v ances ← 0 ; /* sum of relevances */ 
5 sRed und ancies ← 0 ; /* sum of redundancies */ 
6 nAt tempt s ← 1 ; /* counter of attempts for merit improvement */ 
7 foreach D i ∈ D do 

8 D ′ ← D ′ ∪ { D i } ; 
9 sRele v ances ← sRele v ances + SU(D i , Y ) ; 

10 foreach D j ∈ D ′ do 

11 sRed und ancies ← sRed und ancies + SU(D i , D j ) ; 

12 n ← |D ′ | ; 
13 merit ← 

sRele v ances √ 
n +2 ×sRedundancies 

; 

14 if merit > M then 

15 M ← merit; 

16 nAt tempt s ← 1 ; 

17 else 

18 nAt tempt s ← nAt tempt s + 1 ; 

19 D ′ ← D ′ \ { D i } ; 
/* Restore the relevance and redundancy scores */ 

20 sRele v ances ← sRele v ances − SU(D i , Y ) ; 

21 foreach D j ∈ D ′ do 

22 sRed und ancies ← sRed und ancies − SU(D i , D j ) ; 

23 if nAt tempt s = nMaxAt tempt s then break ; 

24 return (D ′ , D baseline = D ′ .last()) ; /* the last feature is used as baseline 
*/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Classifiers and parameters used in experiments. 

Classifier Parameter Value 

k NN Number of neighbors - k 9 

Window size - w 500 

VFDT and HAT Grace period - gp 200 

Split criterion Information gain 
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them ( Hall, 20 0 0 ). 

M(D 

′ ) = 

D ′ ∑ 

D i 

SU(D i , Y ) √ √ √ √ 

n + 2 

D ′ ∑ 

D i ,D j 
i � = j 

SU(D i , D j ) 

(8)

The merit-guided strategy embedded within DISCUSS, pre-

sented in Algorithm 4 , receives as input a single parameter, which

is the number of consecutive attempts ( nMaxAttempts ) that the al-

gorithm is allowed to fail when trying to increase the merit of

the selected feature subset. This hyper-parameter prevents DIS-

CUSS from behaving like a conventional hill-climbing algorithm. By

allowing the selection procedure to fail a limited amount of times,

it prevents the algorithm from getting stuck in a local minimum. 

First, the list of features is sorted in descending order given

their symmetrical uncertainty scores. The main loop (lines 7–23)

retrieves at each iteration the best-ranked feature, which is then

temporarily added to the subset of selected features D 

′ . Next, both

the sums of relevances ( sRelevances ) and redundancies ( sRedundan-

cies ) are incremented with the respective symmetrical uncertainty

values (lines 9–11). These updated summations allow the compu-

tation of the current merit obtained with the addition of D i (lines

12–13). If the merit obtained surpasses the best merit obtained

thus far ( M ), the merit is updated, and the number of attempts

( nAttempts ) is reset (lines 14–16). Otherwise, D i is eliminated from

the set of selected features, and the number of attempts is incre-

mented (lines 17–22). 

If nAttempts reaches the hyper-parameter nMaxAttempts (line

23), the algorithm halts and returns the current subset of se-

lected features D 

′ and the baseline feature is set as the last feature

selected (line 24). To avoid prohibitive computational overheads,

nMaxAt tempt s = 3 was chosen since it needs the least amount of
omputational resources while still enabling a fair number of un-

uccessful attempts. 

Finally, it is important to emphasize that the proposed method

cts as a filter, since is scores each feature w.r.t. the class without

hecking the impact on accuracy rates of a classifier or inside the

odel learning (such as in the decision tree branching process). 

. Analysis 

In this section, we analyze the proposed method against tra-

itional data stream classifiers in both synthetic and real-world

atasets. First, in Section 6.1 we describe the experimental pro-

ocol adopted, including: (i) classifiers tested, (ii) synthetic and

eal-world datasets used, (iii) evaluation metrics, (iii) validation

rocedure, and (iv) statistical tests adopted. Next, we show in

ections 6.2 and 6.3 how window size and discretization hyper-

arameters affect the final outcomes. The results obtained by

ISCUSS in synthetic and real-world datasets are reported in

ections 6.4 and 6.5 , respectively. Finally, a theoretical discussion

bout when and why DISCUSS fails is reported in Section 6.6 . 

.1. Experimental protocol 

In the following experiments, DISCUSS is used in conjunction

ith k NN, Naive Bayes, Very Fast Decision Tree (VFDT) ( Domingos

 Hulten, 20 0 0 ) and Hoeffding Adaptive Tree (HAT) ( Bifet &

avaldà, 2009 ) classifiers. All of the classifiers mentioned above are

vailable as part of the Massive Online Analysis (MOA) framework

 Bifet, Holmes, Kirkby, & Pfahringer, 2010 ), which has also been

sed to implement our proposed method. We highlight that more

obust methods such as Adaptive Random Forests ( Gomes et al.,

017 ) and Oza’s Adaptive Boosting ( Oza, 2005 ) could be used as

ase learners here, yet, they have not been tested since random

orests already perform feature selection internally, and adaptive

oosting methods such as Oza’s Boost also account for internal fea-

ure selection as Hoeffding Trees are often employed as the core

ase learner. Also, it is important to emphasize that both random

orests and boosting methods are ensembles, so it is hard to de-

ermine whether they are successful or not since many compo-

ents affect their outcomes, such as drift detection and adaptation

ethod, diversity induction process, and vote combination scheme.

The parameters adopted for k NN, Very Fast Decision Tree and

oeffding Adaptive Tree classifiers are reported in Table 1 . It is

mportant to highlight that Naive Bayes is not listed as it does

ot have any parameters to be set. The parameters used in DIS-

USS are the following: a window size of 300 and the number of

artitions equal to 10 for discretization. The rationale behind the

hoice of values for the window size and the number of partitions

ill be discussed in Sections 6.2 and 6.3 , respectively. At this point,

e must clarify that these parameters were not tuned to achieve

igher accuracy rates with the goal of avoiding over-optimistic re-

ults. 

To evaluate whether a learning algorithm can work in differ-

nt scenarios, it is necessary to assess its performance across data

treams with different characteristics. DISCUSS was applied to sev-

ral synthetic data streams which are known for being able to

imulate feature drifts ( Barddal et al., 2017 ) and on real-world
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Table 2 

Synthetic data stream experiments. The number of irrelevant features is the difference between the 

total number of features and the relevant ones. 

Experiment identifier # of Features # of Relevants # of Redundants (Linear/RBF/Cosine) 

BG1(A/G) 10 0/20 0/50 0 4 ± 1 15/0/0 

BG2(A/G) 10 0/20 0/50 0 3 15/0/0 

BG3(A/G) 10 0/20 0/50 0 3 15/0/0 

RTG(A/G) 10 0/20 0/50 0 5 5/5/5 

SEA(A/G) 10 0/20 0/50 0 2 5/5/5 
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Table 3 

Real-world data experiments. 

Experiment identifier # of Instances # of Features 

IADS 3279 1558 

NOMAO 34,465 120 

SPAM 9324 39,916 
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atasets. The choice of working on synthetic streams is due to the

ossibility of configuring drifts types and locations during execu-

ion. Even though real-world datasets do not allow researchers to

inpoint whether feature drifts occur and when, they were still

sed to verify if DISCUSS is feasible in complex and real scenar-

os. 

Regarding synthetic experiments, we followed the protocol and

enerators proposed in Barddal et al. (2017) and performed the

xperiments depicted in Table 2 . Every execution contains 1 mil-

ion instances, possesses 2 equally-distributed feature drifts (posi-

ioned at 333,333 and 6 6 6,6 6 6), are binary and balanced classifica-

ion problems, and only a small fraction of features in each exper-

ment are relevant (up to 10%). Experiments marked with an (A)

re abrupt while those with a (G) mark are gradual with a drift

indow length � = 10 , 0 0 0 . Feature drifts occur in all of the pre-

ented experiments since the prior and posterior concepts rely on

 different subset of relevant features. 

First, inspired by the work of Hall (20 0 0) , the Binary Data with

eature Drift Generator (BG-FD) creates instances composed of

oolean ({0, 1}) features ( Barddal et al., 2017 ). BG-FD has three

unctions: BG1-FD, BG2-FD, and BG3-FD. In BG1-FD, presented in

q. (9) , from the entire set of features D, only a random sub-

et D 

∗ ⊂ D is relevant to the concept to be learned. Additionally,

D 

∗| = d r , where d r is a user-given parameter. Conversely, in BG2-

D ( Eq. (10) ) and BG3-FD ( Eq. (11) ), the size of the relevant subset

f features is fixed, where D 

∗ = { D α, D β, D ε} . 

 = 

{ 

1 , if 
∧ 

D i ∈D ∗
�
 x i 

0 , otherwise 
(9) 

 = 

{
1 , if ( � x α ∧ 

�
 x β ) ∨ ( � x α ∧ 

�
 x ε ) ∨ ( � x β ∧ 

�
 x ε ) 

0 , otherwise 
(10) 

 = 

{
1 , if ( � x α ∧ 

�
 x β ∧ 

�
 x ε ) ∨ (¬ 

�
 x α ∧ ¬ 

�
 x β ∧ ¬ 

�
 x ε ) 

0 , otherwise 
(11) 

The Random Tree Generator with Feature Drift (RTG-FD)

uilds a decision tree by randomly performing splits on fea-

ures and assigning a random class label to each leaf. Instances

re created by generating a random valued 

�
 x and traversing

he tree for its corresponding label. This generator is extended

n this work to allow that given a random D 

∗ ⊂ D is relevant,

here |D 

∗| < |D| is a user-given parameter. Therefore, the re-

aining features generated will be either irrelevant or redundant.

arddal, Gomes, de Souza Britto Jr., and Enembreck (2016b) pro-

osed a data stream generator that extends the Streaming Ensem-

le Algorithm (SEA) generator ( Street & Kim, 2001 ) namely SEA-

D , where the suffix stands for Feature Drift . It simulates streams

ith d > 2 uniformly distributed features given by the user, where

 D i ∈ D, D i ∈ [0 ; 10] and only two randomly picked features are rel-

vant to the concept to be learned: D 

∗ = { D α, D β} . An instance is

abeled as positive if � x α + 

�
 x β ≤ θ and negative otherwise. To sim-

late feature drifts, each of the concepts will rely on different fea-

ures, since D α and D β are randomly selected in each concept. 

Finally, the generators introduced above produce concepts

here most (if not all of them) features are used to determine
he class outcome of an instance. In their original form, they do

ot allow for the introduction of additional irrelevant or redun-

ant features. To generate more useful and challenging learning

cenarios for studying feature selection, all generators were mod-

fied to generate a user-specified mix of relevant, irrelevant, and

edundant features. To add irrelevant features into generators we

erely incremented D with numeric or categorical features. In the

rst case, values are sampled from a uniform distribution bounded

n [0; 1], regardless of the class. Following this trend, irrelevant

ategorical features are generated with m different values, which

re also equally likely. In the following experiments we set m = 10 .

s a result, we have tested experiments with 10 0, 20 0 and 500

imensions. These experiments were tailored to check how base

lassifiers and DISCUSS behave in high-dimensional scenarios. 

Similarly, redundant features were added to experiments fol-

owing three simple strategies. The first is a copy with a perturba-

ion factor scheme, in which the value of D j is generated based on

 i by adding a factor p ∈ [0; 1]. If D i is numeric, then 

�
 x j = 

�
 x i ± p × δ

ith δ = ( max D i − min D i ) is used, while if D i is categorical, then

  j is set to � x i with 1 − p chance or otherwise randomly distributed

cross the remaining possible values. Either way, this strategy leads

o a linear correlation, with the Pearson coefficient decaying expo-

entially with the growth of p . For the following experiments, we

se p = . 15 . The Radial Basis Function (RBF) strategy generates nu-

eric values by projecting � x i into a Gaussian distribution. Work-

ng under the assumption that D i ’s distribution is uniform (as it

olds for all generators earlier described), its expectation is given

y E(D i ) = 

δ
2 . Given E ( · ), the value of D i can be projected using

q. (12) to obtain 

�
 x j . The last strategy is similar and applies the co-

ine function to create redundant features as depicted in Eq. (13) .

  j = ( � x i − E(D i ) ) 
2 

(12) 

  j = cos 

(
360 

�
 x i 

δ

)
(13) 

In addition to synthetic data, DISCUSS was also analyzed with

eal-world datasets. Even though it is unclear whether the dataset

ontains any drifts, these were still used for testing how DIS-

USS behaves in potential applications. In Table 3 we can see

he main characteristics of the datasets used. The Internet Adver-

isements (IADS) dataset ( Kushmerick, 1999 ) represents the prob-

em of identifying advertisements on Internet pages. It contains

558 features representing phrases and the geometry of the 3279

RLs. The Nomao dataset (NOMAO) represents a binary classifica-

ion problem with 120 features and 34,465 instances ( Candillier &

emaire, 2012 ). Finally, the Spam Corpus (SPAM) dataset was de-

eloped in Katakis, Tsoumakas, and Vlahavas (2006) as a result of a
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text mining process on an online news dissemination system with

the goal of classifying e-mails as spam or ham. 

In the experiments reported, accuracy is calculated following

the Prequential test-then-train evaluation procedure ( Gama & Ro-

drigues, 2009 ), which allows the monitoring of classifier perfor-

mance over time according to a sliding window. For all synthetic

experiments, the prequential window size was set to 5% of the

stream and the results reported are averages obtained after 30

independent runs, while experiments using real-world data were

evaluated every 10% of the length of the stream and with a sin-

gle run since DISCUSS does not present stochastic behavior. Be-

sides measuring accuracy, it is crucial that data stream mining al-

gorithms perform both rapidly and within memory boundaries. In

the following experiments, processing time is reported as the time

that the algorithms spend in the processor (in seconds), namely

CPU Time; while memory usage is presented in RAM-Hours, where

1 RAM-Hours equals 1GB of RAM used per hour. All experiments

were conducted using the MOA framework on an Intel Xeon CPU

E5649 @ 2.53GHz × 8 based computer running CentOS with 20GB

of memory. To provide statistical confidence to the results ob-

tained, Wilcoxon’s ( Wilcoxon, 1945 ) method was used to test pairs

of hypotheses and Friedman, and Nemenyi tests ( Demsar, 2006 )

were used to perform multiple pair-wise comparisons. 

6.2. Selecting an appropriate window size 

As any other window-based approach for learning from data

streams, the proposed symmetrical uncertainty scoring operator

used in DISCUSS also requires the definition of a proper window

size w . The size of a window should be as small as possible to al-

low quick drift recognition and adaptation ( plasticity ), but at the

same time, large enough so it correctly reflects the distribution of

stable regions of a stream ( stability ) ( Webb et al., 2016 ). Instead of

tuning w based on accuracy, which could vary depending on the

classifier used, we chose to pick a window size according to the

error rates obtained by the symmetrical uncertainty scoring oper-

ator in batch and sliding window versions. The rationale here is to

compare the symmetrical uncertainty values obtained by our slid-

ing window variant against those obtained over an entire stable

data stream. Following this rationale, an experimental window size

evaluation strategy was built as follows. 

First, several synthetic stationary data streams were generated,

each with 10 0,0 0 0 instances. Given each stream, all of its features

had their features’ symmetrical uncertainty to the class computed

in batch mode to serve as a gold standard. Later, different sliding

window sizes w ∈ [10; 10 0 0] were evaluated by computing the de-

viation between the obtained symmetrical uncertainty values and

the gold standard for each feature. Given these results, it is pos-

sible to verify the smallest window size value that also satisfies a

feasible symmetrical uncertainty deviation compared to the entire

sample distribution. 

Results are presented in Fig. 1 a, which shows that the error

rates between the obtained symmetrical uncertainty scores over

sliding windows quickly decay with increasing w . In practice, very

small values, e.g., 100 to 150, already allow a good symmetrical

uncertainty adherence regardless of the experiment domain dur-

ing the evaluated stationary experiments. Therefore, slightly higher

values around 200 or 300 ( Fig. 1 b) are expected to provide a fair

trade-off between drift adaptation and correct symmetrical uncer-

tainty rendering in stable regions. 

Moreover, this experiment also shows that the symmetrical un-

certainty values provided by the proposed scoring operator are

excellent approximations, with errors of less than 10 −3 when

w ≥ 250. Following these results, w = 300 was selected for further

accuracy and processing time analyses. We note, however, that this
s an important parameter that deserves to be tuned depending on

ach data stream domain DISCUSS will be applied to. 

.3. The impact of different numbers of partitions during 

iscretization 

In addition to defining an appropriate window size, it is also es-

ential to assess the impact of different numbers of partitions dur-

ng discretization. The procedure adopted here tracks the perfor-

ance of DISCUSS regarding accuracy, processing time and mem-

ry usage. Only RTG and SEA datasets contain numerical features,

hus only these are affected by discretization. For the sake of

revity, the results presented below are averages obtained during

he experiments across different classifiers. At this point, it is im-

ortant to mention that the behavior observed for each classifier

as the same, i.e., more partitions resulted in higher processing

imes and increased memory consumption. 

Figs. 2 and 3 present the impact of three different numbers of

artitions (bins) used during discretization regarding accuracy, pro-

essing time and memory usage for the RTG and SEA experiments.

rom these plots, we can see that the accuracy results improve

y using fewer partitions. As evaluated in Pfahringer, Holmes, and

irkby (2008) , this is unexpected at first, since more bins often

end to better represent the data, although ultimately leading to

verfitting and therefore worse rates of generalization. 

In addition to the trend observed for accuracy, the process-

ng time and memory usage results also present an important

act: more partitions lead to much higher computational time and

emory usage rates. Evidently, this is expected since storing and

pdating more partitions in memory is computationally more in-

ensive for DISCUSS than storing a smaller amount of them. As a

esult, picking a small number of partitions, such as 10, follows the

uidelines promoted in Pfahringer et al. (2008) , but also have em-

irical evidence obtained for the proposed method. 

.4. Synthetic experiments 

In this section, we compare the accuracy results obtained by

ISCUSS and compare them to the original classifiers and also

gainst the Hoeffding Adaptive Tree (HAT) ( Bifet & Gavaldà, 2009 ).

ince all streams are class-balanced, accuracy will not be biased

owards any specific class, and thus, it is valid for our analysis.

igs. 4–8 present the accuracy obtained for all experiments, includ-

ng both abrupt and gradual variants, while Table 4 presents the

verage accuracy rates obtained. 

The results obtained for BG1, BG2 and SEAFD experiments show

romising improvements, as all classifiers benefit from DISCUSS in

G1 ( Fig. 4 ), and NB and k NN are improved in both BG2 and SEAFD

cenarios ( Figs. 5 and 8 ). In these experiments, the NB classifier

s highlighted, since the average accuracy gain is of 8.35% in BG1,

5.68% for BG2 and 5.71% in SEAFD scenarios. 

The reason behind VFDT presenting smaller improvements is

nductive bias, where different classifiers operate differently when

ed with the same features. This is a trend across all experiments,

here the VFDT does not benefit, or benefits too little, from the

election provided by DISCUSS. This occurs because a decision tree

s already a feature selection process that can capture feature in-

eractions, which is a drawback of DISCUSS that will be further dis-

ussed in Section 6.6 . 

The results for BG3 and RTGFD experiments ( Figs. 6 and 7 ) are

uite similar to each other, where DISCUSS fails to select features

ppropriately, and as a result, classifiers end up presenting accu-

acy rates close to the baseline of 50% for BG3 and above 60% for

he RTG experiment. A detailed discussion about why DISCUSS fails

n these experiments is presented in Section 6.6 . 
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Fig. 1. Average error between the symmetrical uncertainty computed over the whole data set and the one provided by the sliding window version. 

Fig. 2. Impact of different numbers of partitions for the RTG experiments. 

Table 4 

Accuracy results (%) obtained by using DISCUSS with a window size w = 300 against original base learners. Results in bold 

stand for the best results obtained for each experiment, while underlining indicates the best result per classifier, either 

with or without DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

BG1 (A) 78.49 87.13 83.84 84.58 86.13 87.05 89.88 87.17 

BG1 (G) 78.42 86.85 83.66 84.45 86.14 86.85 89.63 86.96 

BG2 (A) 67.38 83.10 74.96 80.73 79.56 77.70 90.00 79.18 

BG2 (G) 67.37 83.00 74.83 80.49 79.54 77.56 89.49 79.16 

BG3 (A) 56.26 55.60 70.08 54.85 80.44 55.56 89.73 55.40 

BG3 (G) 56.29 55.78 69.92 54.90 80.46 55.64 89.10 55.55 

RTGFD (A) 61.80 64.64 60.14 64.88 75.29 70.68 91.59 72.94 

RTGFD (G) 61.77 64.48 60.12 64.96 75.14 70.65 88.98 72.82 

SEAFD (A) 79.80 85.78 72.66 87.82 87.00 85.78 88.59 85.69 

SEAFD (G) 79.79 85.23 72.71 87.05 87.00 85.16 88.55 85.16 
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Fig. 3. Impact of different numbers of partitions for the SEA experiments. 

Fig. 4. Accuracy (%) obtained during the BG1 experiments. 
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Focusing on the average results, depicted in Table 4 , it is clear

that all classifiers benefit from the selection made by DISCUSS at

some point. It is also clear that none of these classifiers was ever

able to surpass the Hoeffding Adaptive Tree. Even though DISCUSS

is unable to help classifiers to beat the Hoeffding Adaptive Tree in

accuracy rates, we expect DISCUSS to serve as a baseline for future

proposals for dynamic feature selection from data streams. 
p  
To provide statistical background to these claims, Wilcoxon’s

aired test was used to compare the results obtained by each clas-

ifier against its combination with DISCUSS, while Friedman and

emenyi tests were used to verify if any statistically significant dif-

erences occurred between all methods. 

As a result, we found that the usage of DISCUSS improves NB’s

ccuracy rates with a 99% confidence level, while significant im-

rovements are only found for kNN if one assumes a 95% con-
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Fig. 5. Accuracy (%) obtained during the BG2 experiments. 

Fig. 6. Accuracy (%) obtained during the BG3 experiments. 
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dence level. Finally, as a result of Friedman’s and Nemenyi’s

ests ( Fig. 9 ), we concluded that HAT and VFDT are significantly

uperior to the other methods also assuming a 95% confidence

evel. 

Computational resources . Traditional feature selection is

nown for decreasing both processing time and memory consump-

ion rates in batch learning. However, there is no guarantee that

he same would hold in streaming scenarios since there is the need

o continually update discriminative power metrics as the stream

rogresses ( Naidu, Dhenge, & Wankhade, 2014 ). To correctly evalu-

te the efficiency of a feature selection algorithm in streaming sce-

arios, one must accumulate the feature selection processing and

he classifier’s training and prediction times. This way, it is pos-

ible to verify if the overhead of computing the scoring operators

nd selecting attributes can be justified by sufficiently decreasing

he complexity, or in the unlikely case of an increase, to determine

f the overhead is still feasible. This section compares the process-

t  
ng time and memory usage of DISCUSS’ when applied to k NN, NB,

FDT and HAT classifiers. 

Table 5 presents the processing time results obtained during

xperiments. For all experiments using NB and most using VFDT,

rocessing times increased when associated to DISCUSS by 193.33%

nd 13.33%, respectively. This occurs for two reasons: (i) the extra-

rocessing time for keeping the scores of all features plus the time

ecessary to train classifiers is greater than merely training a clas-

ifier with all features (despite whether they are good or bad); and

ii) the time spent on retraining classifiers also introduces an over-

ead. Even though these increases are statistically significant and

ay seem prohibitive at first sight, we recommend parsimony over

heir analysis since the processing times are still feasible in all sce-

arios. The results obtained for the k NN classifier are exceptions,

here we see that the usage of DISCUSS has improved the pro-

essing time of the experiments by 12.63%. These results are in-

eresting since DISCUSS decreased the complexity (number of fea-

ures) of the stream sufficiently to justify the overhead of comput-
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Fig. 7. Accuracy (%) obtained during the RTGFD experiments. 

Fig. 8. Accuracy (%) obtained during the SEAFD experiments. 

Fig. 9. Nemenyi critical differences plot for accuracy results. 
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v  
ing the symmetrical uncertainty of each attribute w.r.t the class

over a sliding window and selecting features given feature drifts. 

Finally, the results for memory consumption are presented in

Table 6 , where only Naive Bayes is negatively impacted by DIS-

CUSS, while both kNN and VFDT benefit from it. The increases ob-

tained here are expected since DISCUSS requires storing (i) a slid-

ing window of instances, (ii) structures for computing the neces-

sary entropies, and (iii) discretization structures if the stream con-

tains numeric data. On the other hand, these increases are justi-

fied when applied to k NN since the instances stored in the slid-
ng window after feature selection, are much smaller when com-

ared to the original ones. Also, the same rationale can be used

o explain the memory usage results obtained for VFDT, because

he tree is fed with fewer features, and as a result, it performs less

plits causing the tree to be smaller. Furthermore, the costs for cal-

ulating splits in the leaves is decreased, such as the cost for main-

aining the Naive Bayes predictors at the leaves is also decreased,

nce we are now dealing with reduced dimensionality. Once again,

espite the increases being statistically significant, discretion is ad-

ised since such increases may not be prohibitive in most scenar-
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Table 5 

Processing time ( s ) results obtained by using DISCUSS with a window size w = 300 against original base learners. Results 

in bold stand for the best results obtained for each experiment, while underlining indicates the best result per classifier, 

either with or without DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

BG1 (A) 5.15 17.92 494.96 397.99 10.62 15.87 16.35 17.06 

BG1 (G) 4.82 17.66 494.85 398.43 10.33 17.82 16.16 17.50 

BG2 (A) 5.04 17.66 488.89 391.61 11.36 17.95 15.09 20.79 

BG2 (G) 4.82 17.94 494.37 398.08 11.11 17.65 14.54 20.57 

BG3 (A) 5.04 17.86 496.79 400.08 11.79 15.47 16.02 16.56 

BG3 (G) 4.71 17.46 497.44 400.63 11.39 15.29 17.61 16.15 

RTGFD (A) 32.74 50.39 537.10 583.15 58.63 41.19 54.57 67.21 

RTGFD (G) 32.99 50.64 538.33 580.64 58.09 44.45 60.54 67.21 

SEAFD (A) 7.19 18.08 464.40 398.38 17.64 17.26 24.71 18.19 

SEAFD (G) 6.83 17.72 461.17 398.88 17.57 17.33 32.85 18.57 

Table 6 

RAM-Hours (GB-Hour) results obtained by using DISCUSS with a window size w = 300 against original base learners. Results in bold stand for the 

best results obtained for each experiment, while underlining indicates the best result per classifier, either with or without DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

BG1 (A) 1 . 14 × 10 −8 1 . 25 × 10 −6 8 . 26 × 10 −5 3 . 26 × 10 −5 3 . 77 × 10 −6 1 . 34 × 10 −6 3 . 20 × 10 −6 5 . 91 × 10 −6 

BG1 (G) 1 . 07 × 10 −8 1 . 22 × 10 −6 8 . 26 × 10 −5 3 . 27 × 10 −5 3 . 62 × 10 −6 1 . 50 × 10 −6 3 . 21 × 10 −6 4 . 89 × 10 −6 

BG2 (A) 9 . 48 × 10 −9 1 . 21 × 10 −6 8 . 14 × 10 −5 3 . 20 × 10 −5 4 . 80 × 10 −6 1 . 28 × 10 −6 2 . 95 × 10 −6 7 . 23 × 10 −6 

BG2 (G) 9 . 07 × 10 −9 1 . 23 × 10 −6 8 . 23 × 10 −5 3 . 25 × 10 −5 4 . 71 × 10 −6 1 . 26 × 10 −6 2 . 37 × 10 −6 7 . 16 × 10 −6 

BG3 (A) 1 . 11 × 10 −8 1 . 24 × 10 −6 8 . 29 × 10 −5 3 . 28 × 10 −5 5 . 75 × 10 −6 1 . 24 × 10 −6 3 . 15 × 10 −6 4 . 62 × 10 −6 

BG3 (G) 1 . 03 × 10 −8 1 . 20 × 10 −6 8 . 30 × 10 −5 3 . 29 × 10 −5 5 . 58 × 10 −6 1 . 21 × 10 −6 4 . 09 × 10 −6 5 . 59 × 10 −6 

RTGFD (A) 9 . 94 × 10 −8 4 . 58 × 10 −6 1 . 18 × 10 −4 6 . 19 × 10 −5 1 . 25 × 10 −4 4 . 68 × 10 −6 3 . 78 × 10 −5 3 . 15 × 10 −5 

RTGFD (G) 1 . 00 × 10 −7 4 . 60 × 10 −6 1 . 18 × 10 −4 6 . 17 × 10 −5 1 . 25 × 10 −4 4 . 66 × 10 −6 5 . 62 × 10 −5 3 . 15 × 10 −5 

SEAFD (A) 1 . 96 × 10 −8 1 . 23 × 10 −6 7 . 50 × 10 −5 3 . 16 × 10 −5 1 . 28 × 10 −5 2 . 18 × 10 −6 8 . 52 × 10 −6 6 . 15 × 10 −6 

SEAFD (G) 1 . 86 × 10 −8 1 . 19 × 10 −6 7 . 45 × 10 −5 3 . 17 × 10 −5 1 . 26 × 10 −5 2 . 09 × 10 −6 2 . 73 × 10 −5 6 . 29 × 10 −6 

Table 7 

Accuracy results (%) obtained by using DISCUSS with a window size w = 300 against original base learners in real-world 

datasets. Results in bold stand for the best results obtained for each experiment, while underlining indicates the best 

result per classifier, either with or without DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

AIR 68.57 67.23 67.42 64.50 67.14 64.34 64.97 64.32 

COVTYPE 74.75 76.26 90.33 85.55 82.53 73.35 84.51 71.12 

ELEC 73.37 73.71 77.97 78.74 79.21 79.19 83.23 80.89 

KDD99 99.92 96.31 99.98 99.88 99.99 77.89 99.42 99.41 

SPAM 75.71 90.97 84.08 90.41 87.38 86.97 85.21 92.95 
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os, mainly if the base learner is memory-efficient, such as for the

B classifier, while smaller increases may cause k NN-based sys-

ems to fail due to lack of memory. 

.5. Real-world data 

In this section, we show how DISCUSS behaves when applied to

ifferent classifiers and different real-world datasets. The average

ccuracy results obtained are presented in Table 7 . Here, the re-

ults in real-world datasets follow the trends observed in synthetic

atasets, where DISCUSS can improve the classification rates of NB

nd kNN classifiers in some scenarios, while decision tree-based

earners do not benefit from it. One notable exception is the high-

imensional SPAM experiment, where the Hoeffding Adaptive Tree

HAT) has its accuracy improved from approximately 85% to 92%.

t is also worth to mention the improvements observed in Naive

ayes (NB) and k-Nearest Neighbors (kNN) classifiers still in the

PAM experiment, where classifiers rate improved from approxi-

ately 76% to 91% for NB and from 84% to 90% for kNN. These

esults show that when confronted with high-dimensional data

treams, performing feature selection with DISCUSS could be ben-

ficial, what does not occur with the other datasets consistently as

hey have already been pre-processed and feature selection might

ave been performed already. 

Tables 8 and 9 report the processing time and memory con-

umption rates of classifiers before and after their association with
ISCUSS. In these tables, we can observe the same we observed

arlier on synthetic experiments, as only kNN benefits concerning

rocessing time, and all learners suffer from higher memory con-

umption rates when DISCUSS is used. 

.6. When and why DISCUSS fails 

In the previous sections, DISCUSS was evaluated using differ-

nt classifiers and in a variety of experiments. Focusing on accu-

acy, we observed that the scores obtained for BG3 and RTG ex-

eriments were reasonably lower when compared to the remain-

ng experiments. Now, we use these two generators as examples to

ighlight situations where DISCUSS does not improve the overall

esults. To facilitate this analysis, we will work under the assump-

ion that our stream is class-imbalanced and that the values each

nstance can present (as depicted in Figs. 10 and 11 ) are equally

robable. 

G3 

In this concept, earlier introduced in Eq. (11) , there are three

imensions relevant to the class: D α , D β and D ε . Assuming that

e have a stream that also encompasses an irrelevant feature D ξ

hen generating data, we would have the following 16 features

ombinations and the probabilities depicted in Fig. 10 . 

We start our analysis by comparing a relevant and an irrelevant

eature: D α and D ξ . For D α , if we compute the joint probability
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Table 8 

Processing time ( s ) obtained by using DISCUSS with a window size w = 300 against original base learners in real-world datasets. 

Results in bold stand for the best results obtained for each experiment, while underlining indicates the best result per classifier, 

either with or without DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

AIR 1.25 1.32 17.39 12.89 5.26 5.51 20.40 21.42 

COVTYPE 4.28 4.80 4.97 3.66 72.32 75.99 6.92 6.99 

ELEC 0.43 0.52 7.85 5.67 0.70 0.75 1.04 1.07 

KDD99 2.63 3.03 95.57 73.23 3.57 3.87 4.20 4.37 

SPAM 351.79 378.24 19028.03 13557.47 677.68 683.10 308.17 315.41 

Table 9 

RAM-Hours (GB-Hour) obtained by using DISCUSS with a window size w = 300 against original base learners in real-world datasets. Results in 

bold stand for the best results obtained for each experiment, while underlining indicates the best result per classifier, either with or without 

DISCUSS. 

Experiment NB DISCUSS NB kNN DISCUSS kNN VFDT DISCUSS VFDT HAT DISCUSS HAT 

AIR 2 . 49 × 10 −8 3.09 ×10 −8 1 . 52 × 10 −6 1.68 ×10 −6 4 . 32 × 10 −5 5.22 ×10 −5 2 . 75 × 10 −5 3.27 ×10 −5 

COVTYPE 5 . 75 × 10 −8 7.56 ×10 −8 2 . 76 × 10 −5 3.27 ×10 −5 1 . 75 × 10 −7 2.09 ×10 −7 1 . 24 × 10 −7 1.53 ×10 −7 

ELEC 6 . 34 × 10 −10 8.05 ×10 −10 6 . 28 × 10 −7 7.16 ×10 −7 1 . 60 × 10 −8 1.93 ×10 −8 8 . 33 × 10 −9 1.01 ×10 −8 

KDD99 2 . 10 × 10 −8 2.58 ×10 −8 2 . 65 × 10 −5 3.08 ×10 −5 1 . 91 × 10 −7 2.22 ×10 −7 1 . 75 × 10 −7 2.07 ×10 −7 

SPAM 2 . 61 × 10 −3 3.97 ×10 −3 6.24 8.36 9 . 20 × 10 −2 1 . 10 × 10 −1 8 . 75 × 10 −2 1.18 ×10 −1 

Fig. 10. BG3 feature combinations and probabilities. 

Fig. 11. Example of RTG concept. 
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P [ D α = 1 , Y = 1] , it follows that we have only 2 cases out of 16

( 1 8 ) that match these criteria, which occur when D α = D β = D ε = 1

regardless of the value of D ξ , i.e. D ξ = 1 or D ξ = 0 . In this case,

we could verify if D α and Y are independent from each other, by

checking if P [ D α = 1 , Y = 1] = P [ D α = 1] × P [ Y = 1] . The last asser-

tion is true, since P [ D α = 1] × P [ Y = 1] = 

1 
2 × 1 

4 = 

1 
8 , which is the

same probability presented above. 

We could then repeat the same process for D ξ . First, the joint

probability P [ D ξ = 1 , Y = 1] would end up with the same value
1 
8 . Next, by comparing if D ξ and Y are independent, it follows
hat P [ D ξ = 1 , Y = 1] = P [ D ξ = 1] × P [ Y = 1] holds, because P [ D ξ =
] × P [ Y = 1] = 

1 
2 × 1 

4 = 

1 
8 . Now, we can infer the following: (i)

oth D α and D ξ are equally biased towards the class, and thus,

robability-based measures would score them equally, and that (ii)

robability-wise, both features are claimed to be independent w.r.t.

he class, which should not have been held true for D α , since the

lass determination depends on it. 

The rationale here is simple: by evaluating each feature solely,

ny “single feature metric” such as symmetrical uncertainty, would

ail at depicting the discriminative power of features in cases
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Fig. 12. RTG feature combinations and probabilities. 
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here the class seems independent from them. In such cases, more

omplex metrics that evaluate subsets of features, such as a joint

ymmetrical uncertainty SU ([ D α , D β , D ε ], Y ) would be sufficient at

epicting these complex relationships between features, however,

t’s computation is not trivial nor efficient to be performed on data

treams. 

TG 

Similarly to the BG3 discussion, let us now work under the as-

umption that our RTG concept relies on D α , D β and D ε to de-

ermine the class Y and that we also have an irrelevant feature

 ξ . Given that all of these features are binary, a possible RTG con-

ept would be the one depicted in Fig. 11 , which would result in

eatures-class combinations and probabilities presented in Fig. 12 .

sing the same procedure as before, let us now compare two rel-

vant features ( D α and D ε ) and an irrelevant one ( D ξ ). Computing

he joint probabilities between each feature and the class, we ob-

ain: P [ D α = 1 , Y = 1] = 

1 
4 , P [ D ε = 1 , Y = 1] = 

1 
8 and P [ D ξ = 1 , Y =

] = 

1 
4 . 

Next, we could verify if these features are independent w.r.t.

he class as follows: (i) D α is independent since P [ D α = 1 , Y =
] = P [ α = 1] × P [ Y = 1] holds, (ii) D ε is not dependent since

 [ D ε = 1 , Y = 1] � = P [ ε = 1] × P [ Y = 1] ; and (iii) D ξ is independent

ince P [ D ξ = 1 , Y = 1] = P [ ξ = 1] × P [ Y = 1] also holds. As a result,

ISCUSS would compute the following symmetrical uncertainty

alues: SU(D α, Y ) = 0 . 0 0 0 0 , SU(D ε , Y ) = 0 . 1887 and SU(D ξ , Y ) =
 . 0 0 0 0 . These results show that DISCUSS is unable to depict corre-

ations between relevant features and the class since it performs a

flat” evaluation of the features, while on an RTG concept it would

e necessary to evaluate different partitions of data, such as the

nes that are traversed by the first node of the tree. As before,

hese complex relationships amongst subsets of variables would

equire the computation of joint symmetrical uncertainties. 

. Conclusion 

Motivated by drifting and redundant features, we proposed in

his paper a novel dynamic feature selection algorithm for data

treams, namely DISCUSS. The key concept behind DISCUSS is the

ymmetrical uncertainty scoring operator, which can identify ir-

elevant and redundant features with reasonable success. Even

hough a single merit-guided sequential feature selection strategy
as proposed in this paper, DISCUSS can be easily configured and

ssessed in the future with novel selection schemes. DISCUSS was

valuated in both synthetic and real-world scenarios in conjunc-

ion with different classifiers, showing its ability in being classifier

ndependent. 

DISCUSS improves the performance of methods that do not

ave any internal mechanism for feature selection, and for kNN,

he combination with DISCUSS can even result in lower total re-

ource consumption. 

Conversely, combining DISCUSS with methods that use intrinsic

eature selection, like decision trees, may result in lower accuracy

ates, especially in the presence of complex feature interactions.

dentifying and exploring feature interactions in streaming scenar-

os is an open gap that shall be targeted in future works. 

Also in future works, we plan to adapt feature selection-specific

valuation metrics from batch machine learning to streaming sce-

arios. For instance, Selection Accuracy ( Galelli et al., 2014 ) is a

idely used metric that compares the selected features with a

round-truth, thus allowing the feature selection accuracy to be

uantified without the need of testing different classifiers. Another

mportant metric is Stability ( Kuncheva, 2007 ), which quantifies

ow ‘volatile’ a feature selector is given perturbations in the input

ata. Finally, we also highlight an important limitation that regards

he streams adopted during the analysis since all of them are bi-

ary classification problems. Therefore, it becomes of the utmost

mportance to assess other datasets and streams with more than 2

lass possible outcomes in future works, which is a more general

imitation of data stream works, as cited in the seminal work of

ama, Zliobaite, Bifet, Pechenizkiy, and Bouchachia (2014) . 
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