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Abstract— This paper proposes a hybrid ensemble learning 

approach that combines statistical and data stream mining 
algorithms to obtain better forecasting performance in multiple 
time series prediction problems. Although some multiple time 
series algorithms perform surprisingly well in a variety of 
domains, it is well-known that no one is dominant for every 
existent domain. Therefore, we developed a meta-technique 
based on data stream mining and static ensemble selection 
strategy and evaluated its forecasting goodness-of-fit in time 
series datasets from M3 and M4 competitions. After training 
different regression models, we show how the combination of 
auto.arima and AdaGrad leads to improved forecasting rates, 
thus surpassing the results of state-of-art algorithms. 

Keywords— Time series forecasting, data stream mining 
algorithms, multiple time series, hybrid ensemble. 

I. INTRODUCTION 
Time series are present in our daily life in the economic 

indicators that are showed in the newspapers, in the sales data 
charts of different products, in the displayed data of an 
electroencephalogram, in the price fluctuation in stock 
exchange, in the census data of a population. Therefore, they 
can be found in the most different domains of our society. And 
with an increasing search for more accurate information, 
machine learning algorithms are put to the test to forecast 
future events in such series. Classic statistical techniques reach 
interesting performance in several scenarios of time series 
forecasting, mainly on those with low dimensionality. 
However, hybrid models and machine learning solutions also 
emerge as viable options at an ever-increasing incidence. 

Despite their age, statistical models such as ARIMA 
(Autoregressive Integrated Moving Average) [1], Exponential 
Smoothing method [2], Theta method [3], among others, are 
able to achieve performances that surpass more complex and 
recent techniques, and thus, may also be considered as state-of-
the-art approaches. 

In this work, we selected time series datasets, extracted 
from the M3 [4] and M4 [5] competitions, which have 
forecasting results obtained from the use of statistical 
techniques, machine learning techniques, and hybrid 
techniques. We propose a hybrid model that combines 
statistical learning and data stream mining (DSM) algorithms 

and show how it can be an alternative to more widespread 
methods. Data stream mining algorithms are scalable and 
perform concept drift detection, thus adapting to changes to 
data distribution on the fly. The aforementioned traits are of 
utter importance in large-scale multiple time series, and thus, 
we argue that these should also be recalled in such scenarios. 
The rationale behind our technique is that data stream mining 
algorithms can boost the performance of state-of-the-art 
statistic models because, even though they do not perform very 
well in some series, they can perform better than statistical 
methods in other series due to their inherent adaptability. 
Therefore, if such techniques are correctly combined and 
selected, one would reach higher forecasting rates.  

First, we discuss related works on time series forecasting 
and data stream mining. Next, we introduce our proposal, 
which is later analyzed in the following section. Finally, we 
conclude this paper and list future works. 

II. RELATED WORK 
A time series is defined as a set of events observed in time 

at a constant frequency [6]. The record of a store's monthly 
sales, a city's hourly electricity demand, and the volume of 
daily access to a particular website, are examples of events that 
can be measured at constant time intervals and they are of 
interest for demand prediction. 

In this work, we are particularly interested in scenarios 
where a set of time series is available, regardless of whether 
these are inter-correlated or not. In such cases, when estimating 
the demand for a particular resource for a given period in the 
future, the amount of time series available poses a challenge, as 
these may scale to thousands of even millions of series, as well 
as each may have different trends, degrees of seasonality, 
autocorrelation, spectral entropy [7], and so forth. 

Despite the interesting results obtained by classical 
statistical methods, it is increasingly common to find hybrid 
approaches and machine learning as alternatives to these 
methods, or even as approaches that can be combined. 

With an increasing volume of data generated by social 
networks, by the use of sensors, by the diffusion of concepts 
such as IoT, and Big Data, the use of traditional techniques 
based on batch information processing may not be efficient for 
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all application areas. It is in this scenario, with even bigger 
datasets, that Data Stream Mining (DSM) techniques and tools 
have been developed. The authors in [8] enumerate, among 
other characteristics, that a stream mining algorithm must 
process one instance at a time using a limited amount of 
memory and time for processing, and that it must be able to 
give a response (as a prediction, or the identification of a 
pattern) at any time and be adaptable to temporal changes. 
Therefore, applications demand faster responses and innovative 
techniques that adapt to the increasingly overloaded world of 
information in which we live. 

According to [9], learning should take place in an 
incremental and adaptive fashion, thus allowing the reaction to 
variations in data behavior (concept drifts) and to predict data 
in an increasingly precise way. It is essential that the 
algorithms used in time series analysis are able to identify 
variations of data behavior with greater accuracy so that the 
forecasting process is more precise. For this characteristic, it is 
justifiable to seek to apply data stream mining algorithms, 
which allow gradual, incremental processing of the 
observations, and which are highly adaptive in the processing 
of data of this nature (time series). AdaGrad [10] is an example 
of an adaptive data stream mining algorithm, capable of 
dealing with very sparse and non-sparse data. According to the 
authors in [10] AdaGrad has two goals: to generalize the online 
learning paradigm of specializing an algorithm to fit a 
particular dataset and to automatically adjust the learning rates 
for online learning and stochastic gradient descent on a per-
feature basis. It is used in this study to check its applicability in 
time series forecasting problems.  

Regarding statistical algorithms for time series forecasting, 
this work presents the definition of the ARIMA model, and 
focuses in the use of auto.arima for the experiment. ARIMA is 
a classic statistical algorithm and is also known as a Box-
Jenkins model [1]. According to [11], ARIMA is applicable for 
short-term forecasting in stationary time series, or series that 
can be converted into one, and the behavior of their 
explanatory variables do not change significantly from the past. 
In ARIMA, the "AR" part (from Autoregressive) means that 
the dependent variable is regressed on data obtained from the 
past information from the series. The "I" part (from Integrated) 
is related to the fact that the data is not stationary, and it is 
possible to transform them by differencing. Moreover, the final 
"MA" part of the model (from Moving Average) assumes that 
the dependent variable depends on past errors. Therefore, the 
use of a weighted moving average expects to identify the errors 
present in the past data and use them to help in future data. 

auto.arima [12][13] is an ARIMA implementation available 
for the R in the forecast package, auto.arima() function. It is an 
implementation that seeks to automatically select the best 
ARIMA model for a given time series under based on AIC 
[14], AICc [15], or BIC [16] values calculated during the 
analysis. In a problem with multiple time series, and to avoid 
demanding an individual analysis of each series, a solution that 
automates the selection of the best ARIMA parameters can 
certainly be of great help in the process. Therefore, this study 
also seeks to predict multiple time series without the need for a 
meticulous analysis of each series, especially to make the 
process more user-independent. 

The auto.arima function was selected to this study not only 
because of its automation characteristic, but also because it 
presented best overall results specially as the algorithm to 
create the features used to help in the prediction process by 
data stream mining methods analysed by the study. The 
following methods were also considered in preliminary 
analyses: SES (Simple Exponential Smoothing) [17][18][19], 
Damped (Holt’s linear method with damped trend) [18][20], 
Random Walk forecast [21], Seasonal Naïve [21], Theta 
method [3], ETS (Exponential Smoothing State Space Model) 
[22], STLM (STL decomposition) [23], most of them using 
their implementation as functions of forecast package [12] 
available for R.  Prophet [24], a forecasting procedure that 
proposes also an automatic approach for large-scale forecasting 
of time series was tested too. However, we opted for 
auto.arima because it presented better prediction results in 
preliminary studies than the values calculated by Prophet, 
using default settings for both algorithms. 

Time series forecasting problems are often very well solved 
by statistical models specialized in forecasting this type of data. 
However, there is an increasing interest in the application of 
machine learning techniques and other artificial intelligence 
techniques in solving this type of problem. 

Competitions are frequent in this area, and some well-
known examples are the competitions proposed by S. 
Makridakis as M1, M2, M3 [4], and more recently, M4 [5]. 
Statistical techniques usually achieve excellent performance in 
the prediction process, but hybrid techniques have emerged as 
alternatives to classic methods. Following this rationale, the 
purpose of this paper is to verify whether data stream mining 
algorithms can also be an alternative to, or combined with, 
traditional statistical models in time series forecasting. The use 
of M3 and M4 datasets was chosen mainly because, they 
contain a great variety of series, selected from different 
domains (microeconomy, macroeconomy, industry, finance, 
demographic). M3 dataset was also analysed in an interesting 
study by Ahmed et al. [25] using a subset of 1045 series in a 
machine learning forecasting approach. M4 competition, in 
turn, offered a dataset with 100,000 time series, and in this 
study different sets of its 48,000 monthly series were 
considered. Besides that, in the M3 and M4 datasets each series 
has a small set of observations, and in spite of classic DSM 
applications usually are more focused in dealing with problems 
that involve great number of records, this work is interested in 
evaluate its applicability in the prediction of typical time series 
scenarios using the monthly series of both of the competitions. 

III. METHOD 
Studies on the use of machine learning techniques, 

statistical models and hybrid techniques for the forecasting of 
time series are common but the application of data stream 
mining algorithms in solving this problem is practically 
unobserved. As multiple time series problems usually involve 
the use of large datasets, using DSM techniques seems 
reasonable. It would be possible to consider working with 
multiple series grouped into a single dataset [26]. For this 
study, however, to make a more didactic comparison of 
models, we opted for an individual analysis approach of each 
series. 
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In summary, the method proposed in this paper suggests the 
use of information obtained in the training of different 
algorithms in a selection procedure of the algorithm that will 
probably present the best result in the forecast of each time 
series of the set. Fig. 1 presents a diagram of the method 
proposed in this study, and in this section the description for 
each step of the process is detailed. 

Fig. 2 represents an example of the proposed method 
applied to a specific time series from the M3 dataset selected 
for the study. Its main purpose is to present the simplicity of 
the method and to show how the behavior of fitting and testing 
data of auto.arima and AdaGrad (the algorithms of the 
ensemble) differ from each other. The figure shows a curve 
with the original data of one series of the M3 dataset, the 
N1738 series, and the values obtained in the training and 
forecasting with the methods AdaGrad and auto.arima. The 
adaptive behavior of AdaGrad is observed, adjusting to the 
original data of the series as observations are processed.       

When we calculate the sMAPE (Symmetric Mean Average 
Percentage Error) [27] for the 40% final observations of the 
traing data of the series with each algorithm we obtain: 

sMAPEauto.arima(FIT) = 0.2618, e sMAPEAdaGrad(FIT) = 0.2581. 
The method proposes that, for the N1738 series, the algorithm 
to be used for the final forecasting is the AdaGrad. The last 18 
points of Fig. 2 shows the forecasts of both algorithms 
confirming that the choice (selection) based on the training 
error was a good option for the series. 

A. Steps for Data Stream Mining Methods (DSM) 
Feature Engineering: 

In this step, features that assist the regression process with 
data stream algorithms are created. Initially, the dataset of each 
time series contains original series information as the series 
identifier and the total events for each month. Upon this 
information several features were derived. In practice, lags, 
differences (diffs) and moving averages were extracted from 
the time series original data. Considering that DSM algorithms 
can continuously perform the test and training steps, the central 
idea in this stage was to use only data from events before the 
observation for which the features are being created to avoid 

Fig.  1 - Hybrid ensemble learning approach. 

Fig.  2 - Original data from the N1738 time series and values obtained in 
the training and tests by AdaGrad and auto.arima. 

Fig.  3 - Example of a 6-instance sliding window to select data for creating 
features. 
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data leakage. For instance, given a series with 100 
observations, to create the additional features of the series for 
the 14th month, only data from the previous 13 months were 
used.  

Additional features were created using a sliding window 
(Fig. 3), so there is no need for a complete analysis of all the 
data from each time series since features are created 
incrementally, instance to instance, without having to work 
with a significant amount of past data. These features include:  

• auto.arima forecasts for windows with size 6 
(AR_W6), 12 (AR_W12), 18 (AR_W18), and 24 
(AR_W24).  

• Errors calculated from predictions made with 
auto.arima in sliding windows from 6 to 24 months.  

• Values adjusted based on calculated errors. 
• auto.arima forecasts for 24-instance windows for 

horizons from 1 to 18 months (AR_W24_fc1, 
AR_W24_fc2…AR_W24_fc18). 

• original events and date attributes (year, month, 
bimester, quarter, semester). 
 

After the creation of features, individual files with data 
from each of the series were generated to enable their 
individual processing. At this stage, which can be considered 
as a stage of data preprocessing, it is essential to note that no 
additional normalization, deseasonalization, nor trend analysis 
was used. Therefore, it is expected to verify if the problem with 
multiple time series can be solved by giving up those steps that 
are typically used for the processing of this type of series. The 
main reason for opting for this approach is to avoid (or 
minimize) batch analysis of the entire set of data in stages 
where this is not essential. It is an important decision to make 
viable the future use of the online data analysis approach. 

Fitting and Forecasting (Prequential): 

In this step, MOA [28] was called iteratively (using an R-
language program) to perform the training and one-step-ahead 
forecast of the individual files created for each series to obtain 
forecasts for the horizon of 1 to 18 months (H1 to H18). For 
this stage, we used the Prequential process that implements the 
test-then-train validation scheme supported by the regression 
algorithms provided in MOA. In this model, for each record, 
the software makes a prediction, compares it with the actual 
value, and adapts the behavior of the algorithm based on the 
prediction error.   

After processing the training output logs of each series 
(fitting data), the algorithm predicts a value for the next month 
(one-step-ahead forecasting). Predictions calculated by 
AdaGrad are stored in output files created by MOA. Next, a 
program in R reads the output file to obtain the calculated 
forecast value, reinserts this predicted value as a data point of 
the series, makes the generation of features for the next month 
in question, and processes the file again in the MOA, to obtain 
the 18 forecasts expected by the process. It is an iterative 
process of generating one-step-ahead forecasts.   

Training sMAPE values (based on fitting values of the 40% 
final training records of each series) and forecasting are 

calculated and stored in a database for later use in the process 
of static selection and definition of final forecasting. The fitting 
process was performed with several regression algorithms 
available in MOA, such as AdaGrad [10], AmRules Regressor 
[29], ARF-REG [30], FIMT-DD [31], ORTO [32], and 
RandomRules [28], RandomAMRules [33]. However, this 
study presents only the values obtained with AdaGrad, which 
refers to the algorithm that presented a better performance in 
previous stages of the study. 

B. Steps for Statistical Methods (SM) 
Fitting: 

In this step, auto.arima training values are obtained for each 
time series. For model fitting with auto.arima, no additional 
features were required, since only the original data of the series 
(Month and Events) were used. Once the sMAPE training 
calculations have been performed (based on fitting values of 
the 40% final training records of each series), the data is stored 
in a database for use in the static selection process. 

Forecasting: 

After performing the training with the auto.arima() 
method, the forecast() method was used to generate the 
prediction of 18 months of each time series. The forecast 
values and sMAPE values obtained in this step are stored in a 
database for use in the final forecasting selection process. 

C. Static Selection 
The static selection process considers the sMAPE values 

obtained during the training phase of each series for the 
AdaGrad and auto.arima algorithms and identifies for each 
series which algorithm obtained the least error. From this 
analysis, a Selection Scheme is generated, and it stores data of 
the series and the respective values used in the selection, 
among them, the value of sMAPE taken as reference. Thus, the 
selection is based on simple comparison of errors (sMAPE) 
calculated after the fitting process. The algorithm that 
generates the least error will be considered in the final 
forecasting results for the series.  

D. Final Forecasting Results 
In this step, the forecast values for the horizons of 1 to 18 

months are defined based on the algorithms established for 
each series by the static selection process. Based on the 
sMAPE values obtained in the training phase, we select the 
method that will define the final forecasting values assigned to 
each series. This step concludes the process, and the 
forecasting of all the series from the dataset is defined based on 
the algorithms that presented the least error during the training 
process. 

IV. EXPERIMENT 
The experiment described in this section consists of 

verifying whether the combined use of statistical forecasting 
techniques and data stream mining algorithms yields better 
forecasting values for an 18 months horizon than those 
achieved by isolated use of state-of-the-art algorithms. 

For a proof of concept, we chose to use, for the main 
experiment, a dataset of time series used by Ahmed et al. [25] 
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to validate the performance of machine learning algorithms in 
the prediction of monthly series of the M3 competition. This 
set represents a subset of time series proposed by S. 
Makridakis in its M3 competition1 [4], and was also evaluated 
by [34] in a comparison between statistical methods and 
machine learning algorithms evaluated by Ahmed et al. The 
original set of monthly time series in M3 competition includes 
1428 series. However, in a similar way to that used by [25] and 
[34], only the series with more than 80 observations for 
training were selected, totalizing 1045 series. 

The authors in [25] bring forward a comparative study of 
the performance of different machine learning methods 
(Multilayer Perceptron, Bayesian Neural Network, Generalized 
Regression Neural Network, K-Nearest Neighbor Regression, 
Classification & Regression Trees, Support Vector Regression, 
Gaussian Process) in the processing of these series, and [34] 
makes an additional analysis comparing the results obtained by 
the methods of machine learning in comparison to the 
statistical methods. 

Additional experiments were done using three different 
subsets of M4 time series (with 5,000, 10,000 and all of the its 
48,000 monthly series) in order to validate if the method 
created based on the 1,045 series of M3 would be applicable to 
different sets of time series.  

In this study, we attempted to add a new method in this 
forecasting scenario, combining a statistical method with a 
DSM algorithm to verify the possibility of improving the 
prediction accuracy of this set of series. 

In opposition to what is usually proposed for working with 
time series, in this work, the observations of each time series 
were considered without making use of data normalization, 
neither trend nor seasonality analysis. In this way, we try to 
eliminate the need for an individualized analysis of each series, 
especially for the work with DSM algorithms. However, a 
work with feature engineering was carried out to increase the 
set of original features of each series and improve the 
prediction capacity of this type of algorithms.  

A. Algorithms and Tools 
The statistical algorithm selected for the study, auto.arima 

[12][13], available as a function of the forecast package of R, 
was chosen for its approach of working automatically, allowing 
its use without interference by the user, although it offers the 
possibility of parameter customization. 

Regarding data stream mining algorithms, more 
specifically about regression algorithms, AdaGrad [10], a 
gradient descent optimization algorithm, was selected after 
preliminary studies that included the following methods: 
AdaGrad [10], AmRules Regressor [29], ARF-REG [30], 
FIMT-DD [31], ORTO [32],            Random AMRules [33], 
RandomRules (class moa.classifiers.meta.RandomRules in 
MOA [28]). They are available in software MOA2 (Massive 
Online Analysis) [28], a platform for data stream mining. 
AdaGrad was selected because of its better results in 

 
1 https://forecasters.org/resources/time-series-data/m3-competition/ 

2 https://moa.cms.waikato.ac.nz/ 

preliminary one-step-ahead forecasts experiments using the 
cited algorithms. 

For the execution of the AdaGrad algorithm in MOA, the 
following main parameters were used: 

• Task: EvaluatePrequentialRegression 
• Learner: AdaGrad, default parameters: epsilon = 0; 

lambdaRegularization = 0; learningRate = 0.01;            
lossFunction = HINGE. 

• Evaluator: BasicRegressionPerformanceEvaluator 
 

The experiments described in this work were performed in 
a MacOS High Sierra 10.13.2 operating system, using as tools: 

• Programming Language: R (version 3.4.4) 
• IDE: RStudio (version 1.0.153) 
• MOA (Massive Online Analysis) version 2019.04.01 
• Metrics package [35]: version 0.1.4 
• forecast package [12]: version 8.5 

B. Evaluation Protocol 
sMAPE, the acronym for Symmetric Mean Average 

Percentage Error, also known as symmetric MAPE, is the 
primary metric used in this work and it was earliest presented 
in [27]. It was also used by the M3 and M4 competitions 
among other metrics, so this influenced our choice for the use 
of it in our experiment.  

In [34] the authors presented the definition (1) for the 
sMAPE calculation. The final sMAPE is defined as the average 
error of all forecasts for all the horizons: 

𝑠𝑀𝐴𝑃𝐸 =	
2
𝑘*

|𝑌- − 𝑌/-|
|𝑌-| + |𝑌/-|

∗ 100%
5

-67

															(1) 

where k is the forecasting horizon, Yt the actual values, and 
Ŷt the forecasts for a specific time t. 

For this work, the sMAPE calculation was made using the 
function smape() from the package Metrics [35] for the R 
language. After calculating the sMAPE for each time series 
and for each horizon, an average sMAPE of all the series was 
obtained, establishing the percentage error for all of the time 
series set. 

V. STATIC SELECTION 
Analyzing the results obtained during preliminary tests of 

the algorithms, in which the values of sMAPE obtained for 
one-step-ahead forecast were evaluated, it was observed that, 
in 426 series of the total of 1045 series (i.e., in 40.8% of the 
series used by the main experiment) AdaGrad presented 
smaller prediction errors compared to auto.arima. 

This performance suggested the possibility that by 
combining auto.arima and AdaGrad, a better overall accuracy 
could be obtained in terms of forecasting. Given this 
motivation, it was necessary to establish a way to select the 
best method for each series, and the analysis of errors obtained 
in the training phase could be one of the approaches. 

Before choosing the static selection based on the training 
data of 40% of the final observations of each series, other 
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analyses were carried out: 1) Tests using separate datasets for 
training and validation, in a ratio of 80/20. For this case, 
forecasts were made and compared against the separate data 
for validation, resulting in the calculation of sMAPE for these 
data; 2) Analysis of sMAPE calculated on partitions with 
different sizes (last 6 events, last 12 events, last 20%, last 80% 
and 100%) of the training data were also performed. The 
results of these analysis are presented in Table I.  

VI. RESULTS 
The proposed method selects the best algorithm for each 

time series based on the sMAPE value obtained during the 
training (fitting) step. Before we conclude that the best results 
for the selection should consider the sMAPE obtained with 
40% of the final records of the training data set, other 
experiments were performed, and their results are described in 
the Table I, which presents the forecasting values of 1 to 18 
months obtained using different selection criteria. The first 
column of the table presents the results obtained using a 
validation dataset (a subset of 20% of training dataset). The 
remaining columns show the results of forecasting considering 
different parts of the training dataset, among other 
combinations. It is observed that the use of 40% of the final 
records in a combination of AdaGrad + auto.arima shows the 
highest accuracy, with the lowest value of average sMAPE 
(11.83% = 0.1183). From these results, we made a comparison 
with the data obtained by the individual use of the methods 
(auto.arima and AdaGrad). Table II presents the forecasting 
performance obtained by the methods used in this study 
compared to the sMAPE values calculated for auto.arima 
(considered the benchmark). For each method are presented 
the gain values obtained for the horizons from 1 to 18 months 
ahead. It can be observed that the ensemble (the combination 
of auto.arima and AdaGrad) presents positive gain values for 
the most of the 18 horizons, varying from 0.3 to 3.5% of gain 
when compared to the use of isolated auto.arima. On the other 
hand, the isolated use of AdaGrad cannot surpass the 
performance presented by auto.arima. 

Table III presents the average sMAPE obtained by 
auto.arima for short-term (average for the first six months), 
medium-term (average for results from the 7th to 12th months) 
and long-term (average obtained for the last six months) 
horizons, and shows the gain of the ensemble compared to the 
isolated use of auto.arima. It is possible to notice that the 
ensemble presented positive gain for all of the three intervals. 
The results suggest that the best results are reached by 
combining auto.arima and AdaGrad as proposed.  

In additional experiments with 5,000, 10,000 and 48,000 

monthly series of M4 (Table IV), it was observed that for 
closer horizons (short-term), especially for the 1st to the 4th 
month interval, the method proved to be valid, since the results 
present gain when compared to the values obtained by the 
isolated use of auto.arima (benchmark). This suggests that the 
diversity of characteristics inherent to each series in the set can 
influence the gain obtained by the proposed method. An 
additional technique that can be considered in future studies is 
to identify features of the series such as linearity, tendency, 
curvature, autocorrelations, among others, and to use such 
inherent properties to help the algorithm selection process in 
the ensemble, such as already explored  by Montero-Manso et 
al. [36][37]. Another interesting perception obtained from the 
results is that, although the individual results presented by 
AdaGrad show negative gains in relation to auto.arima, using 

TABLE II.  COMPARISON OF FORECASTING PERFORMANCE OBTAINED BY THE USE OF DIFFERENT METHODS ON 1045 SERIES OF M3 DATASET. 
 SMAPE VALUES FOR AUTO.ARIMA ARE USED AS BENCHMARK IN ORDER TO CALCULATE THE GAIN OBTAINED BY THE ENSEMBLE 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 
auto.arima (sMAPE, 
benchmark) 8.02 8.85 9.85 10.62 10.12 9.97 10.61 10.67 11.08 11.45 10.93 11.65 12.40 14.35 16.00 16.59 16.60 16.53 
 Gain Ratio (%) 

AdaGrad -21.4 -16.8 -15.3 -20.6 -12.2 -11.9 -16.1 -14.4 -18.7 -37.9 -31.6 -28.6 -41.0 -29.6 -27.3 -32.0 -39.8 -49.2 
Ensemble -0.2 2.3 2.8 1.4 3.1 2.1 3.1 3.1 0.4 -2.5 0.3 -0.3 0.3 1.3 2.8 3.5 2.0 1.7 

 

TABLE I.  SMAPE FOR THE FORECASTING (1 TO 18 MONTHS) CALCULATED 
BY THE USE OF DIFFERENT CRITERIA TO SELECT THE ALGORITHMS BASED 

ON FITTING AND VALIDATION DATA (1045 TIME SERIES FROM M3).  

 

Selection 
based on 
validation 

data 

Selection based on fitting data 

H AA 
Minimum 

AA 
Complete 
Series 

AA 
40 
percent 

AA 
6 regs 

AA 
12regs 

AA 
20 
percent 

AA 
Average AA 

Minimum 

1 8,24 8.09 8.04 8,38 8,29 8,08 8,24 8,21 

2 8.97 8.78 8.65 8.79 8.76 8.64 8.66 8.75 

3 9.71 9.79 9.57 10.01 9.68 9.67 9.91 9.91 

4 10.51 10.59 10.47 10.82 10.61 10.49 10.73 10.69 

5 10.21 10.08 9.81 10.07 9.93 9.93 10.05 9.97 

6 10.25 9.90 9.76 9.84 9.66 9.88 9.81 9.75 

7 10.84 10.54 10.28 10.46 10.35 10.44 10.39 10.37 

8 10.92 10.59 10.34 10.39 10.41 10.44 10.39 10.19 

9 11.6 11.08 11.04 11.18 11.06 11.09 10.98 10.95 

10 12.47 11.46 11.74 11.74 11.86 11.76 11.67 11.65 

11 11.64 10.96 10.90 11.09 11.01 11.03 11.04 10.91 

12 12.41 11.72 11.69 12.11 11.86 11.94 11.93 12.03 

13 13.6 12.48 12.36 12.75 12.42 12.55 12.55 12.56 

14 15.01 14.42 14.17 14.81 14.14 14.23 14.55 14.57 

15 16.57 16.08 15.55 16.67 15.83 15.70 16.20 16.18 

16 17.39 16.56 16.01 17.17 16.22 16.26 16.65 16.84 

17 18.02 16.57 16.26 17.71 16.64 16.52 17.07 17.25 

18 18.44 16.45 16.25 17.67 16.92 16.67 16.91 17.17 

AVG 12,60 12,01 11,83 12,31 11,98 11,96 12,10 12,11 
Legend: AA=AdaGrad+auto.arima; AVG=Average sMAPE for all the 18 months 

 

1065

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:24 UTC from IEEE Xplore.  Restrictions apply. 



AdaGrad combined to auto.arima (the ensemble) is capable to 
reach positive gains for the set of series, even in some 
prediction horizons. This demonstrates that, once the ideal 
series are assigned to AdaGrad, the ensemble results are better 
for the series in the set. 

VII. DISCUSSION 

A. Impact of the Training Window Size 
Table I shows that the performance of the static selection 

made based on values obtained by the algorithms during the 
training phase is highly dependent on the number of records 
taken into consideration for the calculation of sMAPE. Taking 
all of the training data into consideration, or a minimal set 
(such as the 6 or 12 final records) did not have a good result as 
the option for calculation based on 40% of the records. This 
suggests that the performance of the algorithms is best 
represented by that portion of the data, and that the analysis of 
that region of the time series is enough for a satisfactory 
prediction performance. 

B. Ensemble versus Isolated Algorithms 
In this paper, we presented the results obtained by the 

isolated use of AdaGrad and auto.arima, and comparing them 
with the results achieved by the combination of AdaGrad and 
auto.arima  (ensemble), and it can be observed (for the main 
experiment) that the combined use of the methods is more 
accurate in 15 of the 18 observations. For an instant horizon 
(one-step-ahead forecast, H1), and for H10 and H12, the 
isolated use of auto.arima presents better results than the hybrid 
solution. However, by comparing the mean values obtained for 
short-term, medium-term, and long-term (Table III), it can be 
observed that the combined use can overcome the use of a 
classic method. 

Based on the results it can be stated that the hypothesis 
"Data stream mining (DSM) algorithms achieve better results 
in time series forecasting if used together with state-of-the-art 
statistical algorithms" was confirmed, and that the combined 
use may lead to an improvement in the performance obtained 
since the results obtained after static selection were better than 
those achieved by the isolated use of the algorithms. 

VIII. CONCLUSION 
Data stream mining techniques are increasingly widespread 

in scenarios where information volume is increasing as in areas 
such as social networks, the universe of IoT and Big Data. 
Forecasting in this kind of scenario, where it is not feasible to 
consider the use of batch processes because it is inconceivable 

to have all the data available for analysis, or where forecasting 
of future values in real-time is expected, suggests that new 
technologies must be constantly sought. It is expected that the 
experiment presented in this study may serve as a basis for 
future research, since the universe of data has a dynamic 
behavior and demands constant research in order to present 
more and more real-time answers, with greater accuracy, 
without dependence of total availability of historical data for 
predictions in the most diverse possible scenarios. The datasets 
used in this experiment were used in a didactic purpose and 
they were selected to serve as a guide for future works in 
which massive databases will be selected, as well as different 
algorithm selection schemes. The use of dynamic selection, for 
example, suggest more reliable and innovative approaches to a 
universe in which data series variance is high. The search for a 
short set of features must also be done to reduce the efforts 
made during steps such as data preprocessing. That is, it is an 
area where research can undoubtedly present positive results. 
For future works, it is reserved to extend the study to all of the 
100,000 time series available in the M4 competition, and to use 
different base forecasting algorithms as well. Besides that, the 
use of feature extraction and meta-learning techniques 
[36][37], should be explored to verify how inherent properties 
can improve the algorithm selection step of the method 
proposed in this study. 
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