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Abstract—A common problem in machine learning is to find
representative real-world labeled datasets to put the methods to
test. When developing approaches to deal with concept drifts,
some datasets such as the Forest Covertype and Nebraska
Weather are common choices for testing, even though there is
no consensus on whether these exhibit concept drifts or not. We
argue that some well-known real-world concept drift datasets
present a high serial dependence in the target class and may have
only minor changes. With this in mind, we propose the use of
naı̈ve methods that should be used for comparison with methods
that deal with concept drifts. The experimental results using
six real-world well-known concept drift datasets show that the
naı̈ve approaches can be better than some methods to deal with
possible concept drifts in datasets such as the Forest Covertype,
Electricity, and Nebraska Weather. These results suggest that
some widely used datasets may be trivial from the concept drift
standpoint, and thus, should be avoided, or at least the results
should be compared with the proposed naı̈ve methods.

Index Terms—concept drift, dataset, benchmark

I. INTRODUCTION

Over the last years, many methods to deal with the Concept
Drift problem have been proposed by the scientific community.
Testing these methods impose a real and recurrent problem in
machine learning: to find representative real-world datasets to
stress such methods and analyze their behavior.

Many authors use artificial problems to test their methods,
such as the STAGGER [1] and the Moving Hyperplane [2]
datasets. These problems usually have low-dimensionality and
represent some specific concept drifts, which may not be
representative of real-world problems [3], [4]. Conversely,
real-world scenarios often have high dimensionality, and the
properties of the concept drifts, e.g., the type of change, rate
of change, and the number of concept drifts, are unknown.

Real-world benchmarks used for testing methods that deal
with concept drift include the Electricity, Forest Covertype,
and Airlines datasets. Inspired by [4]–[6], we argue that some
of the existing real-world benchmarks may present trivial
problems due to temporal dependencies in the target classes.
With this in mind, we present an analysis of the serial
dependence, and the concept drift recovery difficulty of six
real-world concept drift datasets commonly often employed.

We use Cramér’s V test under several time lags to compute
the serial dependence of the target class for each dataset. To
obtain insights on the changes present in each dataset, we
propose a set of naı̈ve strategies, including (i) random triggers
and (ii) static classifiers. The first are tailored to adapt to

concept drifts, while the second are unable to handle concept
drifts. Naı̈ve methods should give us insight about the changes
since these may not adapt to drifts, and thus, should not
perform well, for instance, with relevant accuracy drops when
concept drift occurs. The Cramér’s V analysis also shows that
all tested datasets have some kind of time dependence, and
thus a blind classifier that labels an instance according to the
label of its previous one should be used as a baseline when
employing the test-then-train protocol.

We also use a random trigger, an online learner, and a
classical static classifier as naı̈ve approaches, and show that
the accuracy rates of these methods can surpass some robust
approaches that deal with concept drifts. This intriguing result
suggests that the changes in the tested real-world datasets
are minor since naı̈ve methods recover from such changes.
Therefore, new and more representative real-world concept
drifts datasets are needed. This result also indicates that the
naı̈ve methods should be used in the tests when a new method
to deal with concept drifts is proposed, in order to compare the
proposed approach with naı̈ve approaches and/or traditional
machine learning methods.

The remainder of this paper is organized as follows. In
Section II the concept drift problem and the Cramér’s V test
are defined. Section III presents related works that assess the
quality and methodologies applied in the real-world datasets.
Section IV describes the datasets used in this work. These
datasets are analyzed in Section V, combined with the proposal
of naı̈ve methods to assess the quality of the methods and
datasets. Section VI presents a proof of concept experiment
considering two well-known methods that are compared with
the proposed naı̈ve approaches. Finally, our conclusions are
presented in Section VII.

II. DEFINITIONS

A. Concept Drift

Consider Pt(y) as the class a priori probabilities at a given
time t, and Pt(x) the unconditional distribution at the time t,
a virtual concept drift may occur when between timestamps
t and t + δ, with δ ≥ 1, Pt(y) 6= Pt+δ(y) and/or Pt(x) 6=
Pt+δ(x) while the a posteriori probabilities P (y|x) remain
unaltered, that is, Pt(y|x) = Pt+δ(y|x) [7]–[9].

On the other hand, a real concept drift is caused by
a change in the a posteriori probabilities over time, thus
Pt(y|x) 6= Pt+δ(y|x), where the a priori probabilities and
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the unconditional distributions may or may not change over
time. Note that in a real concept drift scenario, the instances
may change their target classes over time [7]–[9].

B. Cramér’s V

A categorical time series with discrete time range can be
seen a sequence (Xt)N = {x1, . . . , xT } of random variables,
where the range S = {s0, s1, . . . , sd} of Xt belongs to
one of a finite number of unordered d + 1 categories [10].
We consider the original series and its lagged version as
a pair (Xt, Xt−k), of the time series as (Xt, Xt−k) =
(xk+1, x1), . . . , (xT , xT−k), where k ∈ N. In other words,
we shift the series in time by k [11].

Consider Yt as a binary random vector, consisting of the
vectors e0, . . . , ed ∈ {0, 1}d+1, where Yt = ej if Xt = sj ,
and Yt is the binary representation of Xt [11]. Given that
pi,j∈S(k) = 1/(T − k)

∑T
t=k+1 Yt,iYt−k,j is the lagged

bivariate probability, and πi = (1/T )
∑T
t=1 Yt,i, the sample

version of the Cramér’s V for a lag k is given by

v(k) =

√√√√1

d

∑
i,j∈S

(pi,j(k)− πiπj)2

πiπj
(1)

where v(k) ∈ [0; 1] indicates a perfect serial indepen-
dence/dependence at lag k. A perfect serial dependence at lag
k indicate that we can perfectly predict Xt after observing
Xt−k [10].

III. RELATED WORK

Besides the wide use of the real-world datasets in the
literature, for the best of our knowledge, few works assess
the quality and the methodology used in the tests when
considering these benchmarks as concept drift scenarios. In the
remainder of this paper, we refer to a classifier that predicts
the label of an instance arriving at a timestamp t as the same
observed at a timestamp (t− 1) as a blind classifier.

In [5] it is demonstrated that the Electricity and Forest
covertype benchmarks present a high correlation in the target
class attribute due to time dependence, and thus, a blind classi-
fier yields better results than sophisticated methods developed
to deal with concept drifts.

A similar statement was given in [12], where authors
showed that a blind classifier achieves high accuracy in the
Electricity benchmark when using the test-then-train approach
and suggest that methods using the Electricity dataset should
be compared against a blind classifier.

More recently, [6] showed that a blind trigger (that fires
periodically) can achieve better results than some state-of-the-
art triggers in the Electricity and Forest covertype benchmarks.
The authors argue that this is caused by temporal dependencies
in the datasets, and suggests that the final accuracy should not
be the only metric to assess methods that deal with concept
drifts. The authors suggest the use of artificial datasets and
metrics such as the Mean Time between False Alarms, and the
Missed Detection Rate, which measures the frequency of false
alarms, and the rate of concept drifts not detected, respectively.

Finally, the authors in [13] developed metrics that are
applied in time windows and can be used to take measurements
such as the magnitude and duration of changes in P (y), P (x)
and P (y|x). The work of [14] extends the proposal of [13]
to include more computation efficient metrics and analyzes
some real-world benchmarks, such as Electricity and Airlines.
Results show that the concept drifts present in the Electricity
dataset are mostly virtual, and in the Airlines dataset, both
virtual and real concept drifts are present.

IV. CONCEPT DRIFT BENCHMARKS DESCRIPTION

In this section, we briefly describe the real-world bench-
marks commonly used for testing methods that deal with con-
cept drifts1. We also include a description of the STAGGER
and Moving Hyperplane artificial datasets, which are used in
the analysis to compare the results.

STAGGER Concepts: This artificial dataset, proposed in
[1], is composed of three attributes (color, shape and size)
and two classes (positive/negative). There are three concepts
where the positive class is defined as given: in the first concept
it is defined as color = red ∧ size = small; in the second it
is given by color = green∨ shape = circle, and in the third
concept the positive class is defined as size = medium ∨
size = large. In this paper, we generate 6,000 samples, with
a change of concept for every 2,000 samples.

Moving Hyperplane: Introduced in [2], this artificial
dataset consists of a d − dimensional real space containing
samples generated uniformly in a predefined range. Samples
are labeled as positive if

∑d
i=1 wixi > w0, otherwise the

samples are labeled as negative. In the equation, wi and xi
correspond to the ith attribute weight and value, respectively.
Concept drifts are introduced by varying the wi weights
according to wi = wi + cσ, where c controls the change,
and σ controls the probability that the direction of change is
reversed [15]. In this paper we consider d = 5, c = 0.001%,
σ = 1%, and a total of 100,000 instances generated.

Electricity: Proposed in [16], this dataset refers to the
Australian New South Wales Electricity Market. The dataset
is composed of 45,312 samples, each of them containing five
attributes. The task is to predict if the electricity price is higher
or lower than a moving average of the last 24 hours.

Forest covertype: This dataset is composed of 581,012
samples and defines the classification task as identifying the
forest covertype for 30m2 cells. Each instance is described by
54 attributes and a target class, which belongs to the range
[1, 7] that identifies the forest covertype [17].

Nebraska Weather: This dataset contains weather data
collected by the U.S. National Oceanic and Atmospheric
Administration in the Offutt Air Force Base in Bellevue,
Nebraska. Each instance is composed of 8 attributes and a
binary target class indicating the presence or not of rain. We
tested the same configuration used in [18] and [19], where
missing values were replaced by the mean of the features in the
preceding and following samples. It contains 18,159 samples.

1Datasets available at http://prlalmeida.com.br/driftDatasets.html
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Airlines: This dataset is a variation of the original dataset
proposed in [20], where the task is defined as identifying if the
flights will be delayed or not [21]. For each instance, seven
attributes and a target class (delayed or not) are given. The
dataset comprises 539,383 samples in total.

Pokerhand: This dataset is composed of 1,025,010 sam-
ples, where the task is to predict the poker hand in a set of five
cards drawn from a deck of 52 cards. Each hand is described
according to 10 attributes including the suit and rank of each
of the five cards in the poker hand. The class attribute ∈ [0..9]
informs the quality of the hand [15].

PKLot Concept Drift: this is a variation of the original
PKLot dataset [22]. The test protocol proposed in [9] uses 59
LBP features and defines the classification problem as iden-
tifying parking spots as occupied or vacant. In the protocol,
at each time step, 50 random samples of each class collected
from the previous day are given for training, and all instances
from the current day must be classified. The dataset contains
619,466 instances.

V. EVALUATION

In [5], [6] it is demonstrated that the data drawn from the
Electricity and Forest covertype has a time dependence in the
target class. Firstly, we replicate these experiments and extend
the results to include all datasets discussed in Section IV.

Since the target class can be seen as a categorical series, we
use the Cramér’s V measure to compute the serial dependence
for the target class (in [5], [6] an autocorrelation function
is used since only binary problems are studied). The results
are shown in Figure 1. As one can observe in Figure 1, all
tested datasets present some serial dependence in the target
class attribute. Intuitively, some serial dependence in the target
classes for the real-world problems is expected. For instance,
the Cramér’s V value in the Electricity dataset peaks at every
24 hours, thus indicating that the current price is strongly
related to the price from the same hour in previous days.

Note the high Cramér’s V value even for large lags in the
PKLot dataset. This indicates that this dataset may not be
suitable for tests using a test-then-train approach [8], [15]
since a blind classifier will achieve high accuracy in this
problem. Also, a test-then-train approach in the PKLot dataset
is an impractical test, as in the real world, it is unreasonable
to acquire the true label from the previous instance before
classifying the next one in a parking lot classification problem.
The original evaluation protocol proposed in [9] does not
use a test-then-train approach for the PKLot. However, the
Electricity, Forest, and Pokerhand datasets also show a high
serial dependence, and these datasets are often used in a test-
then-train fashion [15], [21], [23].

Since in the tested datasets the Cramér’s V value peaks
when lag = 1, in a test-then-train scenario, methods proposed
to deal with concept drifts should at least perform better than a
blind classifier, that classifies the instance given at t as having
the same class from the instance given at (t− 1).

Another question that arises in these benchmarks is if there
is any concept drift present. Of course, it is a fundamentally

difficult question since if we could develop a method to
definitely answer this question, this method could be used to
create a perfect concept drift detector for any stream. In spite
of that, we can use some intuitions in order to suspect that
there is some concept drift in the datasets.

Since this is a common practice, all the following tests use
the test-then-train approach for all except the PKLot dataset.
For the PKLot benchmark, the original protocol discussed in
Section IV is used. All results are averaged across 30 runs.

First, since many methods may rely on a trigger to detect
and adapt to concept drifts, we test a Hoeffding Tree [24]
classifier, that is restarted every time a concept drift is signaled
by means of a random trigger, which signals a drift with a
probability p for every new training instance received. The
rationale in this test is that a random trigger may increase the
accuracy if a real concept drift is present, since the discard
of previous conflicting data may be beneficial. The random
trigger should also be used as a naı̈ve method for comparison
with other methods since a trigger that fires at random should
perform worse than a well-conceived one. Figure 2 shows the
average accuracy achieved by the random trigger according to
p in the discussed datasets.

As one can observe in Figure 2, for many of the tested
datasets the average accuracy is increased when using a ran-
dom trigger when p ∈ [1, 4]% when compared an incremental
learner without any trigger (p = 0%). This indicates that for
some problems, a random discard of old data is enough to
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Fig. 1. Target class serial dependence.
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Fig. 2. Average accuracy achieved when using a random trigger.

TABLE I
BEST VALUE OF p USING A RANDOM TRIGGER.

Hoeffding Tree Naı̈ve Bayes
Benchmark Best p Avg. Accuracy Best p Avg. Accuracy
STAGGER 1% 94.68% 1% 94.74%
Hyperplane 0% 87.06% 1% 85.19%
Electricity 1% 83.23% 2% 83.72%
Forest Cover 3% 86.94% 3% 87.03%
Nebraska 0% 73.43% 2% 71.54%
Airlines 0% 65.08% 0% 64.55%
pokerhand 4% 78.45% 4% 78.68%
PKLot 0% 86.17% 0% 86.1%

increase the average accuracy, and to justify the use of a
concept drift detector, methods that deal with concept drifts
should generate results at least better than the best random
trigger. Table I shows the best value of p and its corresponding
average accuracy achieved for the random trigger in each of
the tested benchmarks, where we also include the best results
obtained using a Naı̈ve Bayes classifier.

Since the main problem caused by a concept drift is the

accuracy loss over time [21], one should test a static classifier
in the datasets to verify if there is any accuracy drop over time.
Since most benchmarks propose finite problems, we suggest
to use the first 10% of the data in the stream for training a
static (conventional) classifier that should be used as a baseline
(naı̈ve approach), and test this classifier in the remaining of
the stream (for the static classifier test we ignored the original
protocol of the PKLot and used the first 10% samples of the
stream for training – i.e., the first 61,946 instances).

In [21] it is mentioned that a concept drift can be reflected
in a decrease in the accuracy over time in incremental learners.
Thus, another interesting test that should be made is the use
of an incremental learner that does not adapt to concept drifts
(e.g., a simple Naı̈ve Bayes or Hoeffding Tree classifier).
An incremental learner that does not consider concept drifts
should not be able to quickly recover its accuracy after a
change, especially under real concept drifts, due to the possibly
conflicting data received at different time steps.

Figure 3 shows the prequential accuracy for a window
size of 1,000 instances [8] in the real-world datasets to
obtain insights about the presence of concept drifts and the
classification difficulty level in these datasets. All approaches
use Hoeffding Trees as base learners. We also include the
results in the STAGGER and Moving Hyperplane artificial
datasets for comparison purposes. The random trigger value p
for the tests in Figure 3 are the best values for the Hoeffding
Tree observed in Table I, and for the benchmarks where the
best p is 0, we do not show the Random trigger classifier as it
is the same as a Hoeffding Tree classifier without any trigger.

First considering the artificial benchmarks in Figure 3,
we can observe that the blind classifier does not perform
well (the high accuracy at the beginning of the STAGGER
Concepts dataset is given by differences in the priors). The
static classifier shows severe accuracy losses over time, and
the random trigger can keep a stable accuracy over time due
to the frequent discard of old data in the STAGGER. When
considering the Hoeffding Tree classifier in the STAGGER
problem, it is clear that the abrupt changes cause a significant
accuracy loss that takes a long time to be mitigated.

The Hoeffding Tree classifier shows a stable prequential
accuracy in 3b, which is expected since the concept drift is
gradual (a small change for every new instance generated). The
good results achieved by the Hoeffding Tree combined with
a Random Trigger in Figs. 3a/3b demonstrate that in these
simple problems, a random discard of old data, or a classifier
that learns in an online fashion may be enough to recover from
concept drifts. Nevertheless, it is expected that a method built
to deal with concept drifts should surpass the accuracies of
these naı̈ve methods.

The results obtained in the real-world benchmarks show
some interesting behaviors. As expected, the static classifier
does show severe accuracy losses for most tested real-world
datasets in Figure 3. On the other hand, the Hoeffding Tree
classifier is able to mitigate most of the accuracy drops when
compared to the static classifier in Figures 3c, 3d, 3g and 3h,
indicating that the drift may be predominantly virtual (i.e., the
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Fig. 3. Baseline methods prequential accuracies in the real-world and artificial datasets.

Hoeffding Tree is learning new areas in the feature space as
new instances arrive), and/or the changes in the a posteiori
probabilities are small/gradual in these benchmarks.

The results in the Electricity dataset corroborate with [14],
where it is discussed that the drift in this dataset is mostly
virtual. Note that for the PKLot dataset in Figure 3h, the
static classifier was trained using 61,946 instances, while the
Hoeffding Tree was trained in an online fashion using 8,200
samples.

The blind classifier achieved good results in all real-world
benchmarks (the result is not available in the PKLot since
it does not follow a test-then-train approach)2, and the best
results in the Electricity and Forest covertype datasets. This

2When using a test-then-train approach in the PKLot, the average accuracy
achieved is: Hoeffding Tree 94.22%; Blind Classifier 99.96%; Random Trigger
94.22%; DDM 99.87%; LevBag 99.36%; LevRnd 97.48%.

further indicates the importance of comparing against this
classifier, since it is not possible to justify the use of a complex
and computationally expensive method when a blind learner
may achieve better results. The random trigger classifier was
able to keep a stable prequential accuracy, and it achieved the
best result in the Pokerhand (Figure 3g) benchmark.

VI. EXPERIMENTS

Next, we validate the proposed evaluation approach using
the DDM [25] trigger using a Hoeffding Tree as the base
learner, and the Leveraging Bagging method [26] using the
ADWIN [27] as a trigger and a pool of 30 Hoeffding Trees.
Figure 4 shows the prequential accuracy over a window of
size 1,000 and compares DDM results against the best naı̈ve
approach for each dataset discussed in Section V. The average
results achieved by all proposed naı̈ve approaches discussed
in Section V and the DDM method is available in Table II.
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Fig. 4. Experimental results using the DDM method.

The results in Figure 4 and Table II show that the DDM
method behaves as expected in a stream that contains concept
drifts due to the good results in the artificial benchmarks.
However, when analyzing the results obtained in the real-
world-benchmarks, it is not clear if the DDM method is
indeed adapting to concept drifts. In the Forest Covertype and
Pokerhand benchmarks, the method was not able to keep an
accuracy higher than some naı̈ve methods.

Figure 5 (only the real-world benchmarks results are pre-
sented in Figure 5) and Table III show the result of the
tests using the Leveraging Bagging (LevBag) method. The
Leveraging Bagging copes with concept drifts employing
a pool of classifiers, where the worst performing classifier
is replaced when a trigger detects the concept drift. This
introduces a problem, as we may not know whether the method

is generating better results due to the correct detection and
adaptation to concept drifts, or due to the increased number
of classifiers and diversity of the pool.

To address this problem, we replaced the original trigger

TABLE II
BASELINE METHODS AND DDM AVERAGE ACCURACY.

Benchmark Hoeff. Blind Random Static DDM
STAGGER 86.18% 62.00% 94.68% 46.44% 99.60%
Hyperplane 87.06% 49.93% 87.06% 65.64% 91.76%
Electricity 79.20% 85.33% 83.23% 43.50% 85.41%
Forest 80.31% 95.06% 86,94% 53.94% 87.35%
Nebraska 73.43% 68.02% 73.43% 68.50% 73.64%
Airlines 65.08% 58.05% 65.08% 61.69% 65.28%
Poker 76.06% 74.54% 78.45% 44.97% 72.74%
PKLot2 86.39% - 86.39% 73.72% 86.69%
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Fig. 5. Experimental results using the Leveraging Bagging method.

TABLE III
BASELINE METHODS AND THE LEVERAGING BAG. AVERAGE ACCURACY.

Benchmark Hoeff. Blind Random Static LevBag LevRnd
STAGGER 86.18% 62.00% 94.68% 46.44% 97.74% 97.68%
Hyperplane 87.06% 49.93% 87.06% 65.64% 93.28% 89.23%
Electricity 79.20% 85.33% 83.23% 43.50% 89.80% 89.96%
Forest 80.31% 95.06% 86,94% 53.94% 91.70% 87.88%
Nebraska 73.43% 68.02% 73.43% 68.50% 78.11% 78.47%
Airlines 65.08% 58.05% 65.08% 61.69% 63.14% 64.62%
Poker 76.06% 74.54% 78.45% 44.97% 87.60% 79.61%
PKLot2 86.39% - 86.39% 73.72% 90.36% 90.08%

used in the method by a Random Trigger, using the p values
described in Table I. If the results using the random trigger
(LevRnd) are similar to the original method, any accuracy
improvement in the benchmarks is probably related to the
stronger accuracy of the ensemble.

Beginning with the artificial datasets in Table III, there is
an accuracy improvement when using the original Leveraging
Bagging method, when compared with the naı̈ve methods
in the Moving Hyperplane benchmark. Nevertheless, similar
results were achieved when comparing the original versus
the Random Trigger version of the method when using the
STAGGER Concepts dataset.

When considering the real-world benchmarks in Figure 5

and Table III, note that the results achieved by the original
and Random Trigger versions of the Leveraging Bagging
method are quite similar for the Electricity, Nebraska and
Airlines datasets. According to Table III, the Random Trigger
version of the method achieved better results than the original
Leveraging Bagging in the Electricity and Nebraska datasets,
further indicating that the accuracy improvements are due to
the stronger classification abilities of the pool, not to the
detection of concept drifts.

In the Forest Covertype dataset, the blind classifier achieved
better results than both versions of the Leveraging Bagging
method. The same occurs in the Airlines when comparing the
Leveraging Bagging to a simple Hoeffding Tree classifier. In
the Pokerhand and PKLot datasets, the Leveraging Bagging
show an accuracy higher than any naı̈ve method, including
the Random Trigger version of the Leveraging Bagging.

It is important to mention that we are not suggesting that
the DDM or Leveraging Bagging methods are not able to cope
with concept drifts since both are well studied in the literature,
and the artificial benchmarks show that these methods can
cope with changes. However, the results show that some of the
most common benchmarks may not be suitable to put methods
that deal with concept drifts to test. The reason is that it is
difficult to determine if the methods are indeed adapting to
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the concept drifts or if they are triggering at random. This is
especially problematic in the test-then-train approach, where
clearly some naı̈ve approaches such as a blind classifier or a
random trigger can achieve better results, as shown in Figures
4, 5, and in Tables II, III.

VII. CONCLUSIONS

In this paper, we showed that some common datasets used
for testing techniques tailored for handling drifting data might
have only minor changes, if any. Therefore, we proposed
simple naı̈ve approaches for benchmarking, where methods
that deal with concept drifts should have their accuracy rates
compared with such approaches. Experimental results show
that the naı̈ve approaches can be better than some classical
methods to deal with possible concept drifts in datasets such as
the Forest Covertype, Electricity, and Nebraska Weather, thus
suggesting that these benchmarks may present trivial problems
in the concept drift viewpoint. This indicates that more robust
datasets for testing concepts drift approaches are needed.

Besides being a common practice that is reproducible in
the real-world for some problems, we also argue that a test-
then-train approach is an unrealistic test under some scenarios.
For instance, how can we assume a test instance will be
immediately labeled after the test in the Forest Covertype
problem? For these problems, we recommend to not consider
the entire stream as labeled, or insert some delay when labeling
the instances [8].

The results show the importance of using a range of datasets
to put methods that deal with concept drifts to test, including
artificial problems, where the properties of the concept drifts
are known. Also, the use of naı̈ve methods can be of special
importance to researchers that wish to propose new datasets
containing concept drifts since, in these scenarios, it is imper-
ative to give some evidence that a concept drift is present in
the proposed problem.

As future work, we intend to expand the analysis to new
benchmarks in order to find more representative concept drift
problems and to consider new naı̈ve methods and metrics
to give better insights of the quality of the benchmarks for
assessing methods that deal with concept drifts.
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