
Overcoming Feature Drifts via Dynamic Feature
Weighted k-Nearest Neighbor Learning

Jean Paul Barddal, Heitor Murilo Gomes, Jones Granatyr, Alceu de Souza Britto Jr., Fabrı́cio Enembreck
Graduate Program in Informatics (PPGIa)

Pontifı́cia Universidade Católica do Paraná (PUCPR)
{jean.barddal, hmgomes, alceu, fabricio}@ppgia.pucpr.br, jones.granatyr@pucpr.edu.br

Curitiba, Brazil

Abstract—Extracting useful knowledge from data streams is
problematic, mainly due to changes in their data distribution,
a phenomenon named concept drift. Recently, studies have
shown that most of existing algorithms for learning from data
streams do not encompass techniques for a specific kind of drift:
feature drifts. Feature drifts occur when features become, or
cease to be, relevant to the learning task. In this paper, we
propose an extension to the k-nearest neighbor classifier, so its
distances’ computations are weighted according to their current
discriminative power. On our proposal, the discriminative power
of features is given by entropy, which is swiftly computed over
a sliding window. Empirical evidence shows that our approach
is able to overcome several existing algorithms in accuracy
and feature drift adaptation, while at the expense of bounded
processing time and memory space.

I. INTRODUCTION

Extracting useful knowledge from data streams is problem-
atic, mainly due to possible changes in their data distributions,
a phenomenon named concept drift. In the last years, the data
stream community has developed several approaches for min-
ing data streams in both supervised [1], [2] and unsupervised
[3] fashions, always focusing on overcoming concept drifts.

In this paper, we tackle a specific kind of drift that has not
earned much attention in the literature: feature drifts. Feature
drifts occur whenever features become - or cease to be -
relevant to the learning task. We propose an extension to the
k-nearest neighbor classifier, so its distances’ computations
are weighted according to their current discriminative power.
We show that the discriminative power of features can be
calculated based on the information theory concept of entropy,
which can be swiftly computed over sliding windows.

This paper is divided as follows. Firstly, Section II in-
troduces the problem of classification in data streams while
Section III states our aim: feature drifts. Following, Section
IV briefly reviews the original k-Nearest Neighbor classifier,
recalls formulas for computing entropy over sliding windows
and introduces our proposal, namely k-Nearest Neighbor with
Feature Weighting (kNN-FW). Later, Section V provides an
empirical evaluation of kNN-FW against several data stream
classification algorithms, showing its efficiency in both syn-
thetic and real-world problems. Finally, Section VI concludes
this paper and states envisioned future works.

II. DATA STREAM CLASSIFICATION

Let S = [it]t→∞t=0 define a data stream providing instances
it = (~xt, yt), each of which arriving at a timestamp t, where
~xt is a d-dimensional feature vector belonging to a feature set
D and yt ∈ Y is the ground-truth label of ~xt. The feature set
of a data stream is described as D = [Dj]

d
j=1, that is possibly

continuous, ordinal, categorical or mixed.
By far, the most common approach for extracting useful

knowledge from data streams is classification. Assuming a set
of possible classes Y = {y1, . . . , yc}, a classifier builds and
incrementally updates a model f : ~x → Y from labeled seen
data in order to classify future unlabeled instances.

Classifying data streams embed several restrictions [4].
Firstly, instances arrive over time and there is no control over
their order nor how they should be processed. Also, streams
are potentially unbounded, so instances must be discarded
right after their processing or periodically, given available
main memory space. Finally, the data distribution is expected
to change over time, implying in changes in the concept to
be learned, a phenomenon named concept drift. Therefore,
classifiers must possess strategies to detect drifts and adapt
their models f accordingly [4].

III. FEATURE DRIFT

Most of the existing works for classifying data streams
tackle the infinite length and drifting concept properties of
these ephemeral environments. Recently, studies [5], [6] have
demonstrated that existing data stream learners do not encom-
pass techniques for one specific kind of drifts: feature drifts
[7], [8]. As previously described, feature drifts occur whenever
a feature of the stream becomes, or ceases to be, relevant to
a concept Ct.

Given a set of features D at a timestamp ti, we are able
to select its ground-truth relevant subset of features D∗ti ⊆ D.
A feature drift occurs if, at any two timestamps ti and tj ,
D∗ti 6= D

∗
tj betides [5].

Let r(Di, tj) ∈ {0, 1} denote a function that determines the
relevance of a feature Di ∈ D in a timestamp of the stream.
A positive relevance, i.e. r(Di, tj) = 1, states that Di ∈ D∗j
and that it impacts the underlying conditional probabilities
P [~x|Y] of the concept Ct. Therefore, a feature drift occurs if
the relevance of a feature Di changes in a timespan between
tj and tk, as stated in Eq. 1.

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4847-2/16/$31.00 ©2016 IEEE 2186

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

∃tj∃tk, tj < tk, r(Di, tj) 6= r(Di, tk) (1)

Changes in r(·, ·) affect the decision boundary to be learned
by the classifier. As in other types of drifts, several changes in
r(·, ·) may occur during the stream. This enforces classifiers to
discern between relevant and irrelevant features as the stream
progresses. Whenever a classifier detects a feature drift, it must
either (i) discard and learn an entirely new model; or (ii) adapt
the current model to relevance drifts [7], [6].

IV. PROPOSED ALGORITHM

In this section we review the original k-Nearest Neighbor
algorithm, recall the computation of entropy over sliding
windows and introduce our proposal: the k-Nearest Neighbor
with Feature Weighting (kNN-FW).

A. k-Nearest Neighbor Classification

k-Nearest Neighbor (kNN) [9] is one of the most funda-
mental, simple and widely used classification methods, which
is able to learn complex (non-linear) functions [9]. kNN is
a lazy learner since it does not require building a model
before actual use. kNN’s version for data streams classifies
instances according to the k “closest” buffered instances. The
definition of “close” means that a distance measure is used to
determine how similar/dissimilar two instances are. There are
several approaches to compute distances between instances,
nevertheless, the most used one is the Euclidian distance, given
by Eq. 2.

dE(~xi, ~xj) =

√ ∑
Dk∈D

(~xi[Dk]− ~xj [Dk])2 (2)

In order to deal with time and memory space constraints,
kNN buffers instances as they become available in a FIFO
buffer of size W . Defining a value for W is hazy as it must
be set according to available memory space and processing
time since the computational time for classifying each new
instance is O(Wd).

B. Preliminaries

The success of kNN relies on which instances are deemed
close, a concept defined by its distance function. The Euclidian
distance allows irrelevant features to have as much effect on
distances as relevant ones.

The hypothesis behind our proposal is that kNN can be ex-
tended to overcome irrelevant features in feature drifts through
incremental tracking of their discriminative power. Feature
weighting is broadly used in batch learning [10], however,
to the best of authors’ knowledge, only the work of [11]
provides feature weighting techniques for streaming scenarios.
Our work significantly differs from [11] since weights in [11]
are given by temporal functions developed for smooth changes
and do not rely on information theory aspects.

Our proposal performs relevancy tracking by adopting En-
tropy as a metric of discriminative power. Although Entropy is

Algorithm 1: Sliding window entropy. Adapted from [12].
input : window size W , a data stream S.
output : be ready to provide the entropy h at any time.

1 Let W ← ∅ be the sliding window;
2 Let h← 0 be the entropy;
3 Let n← 0 be the amount of instances in W ;
4 Let ni ← 0 be the number of instances with the yi-th label;
5 foreach (~xi, yi) ∈ S do
6 if |W| = W then
7 Dequeue oldest element from W from the yj-th class;
8 h← DEC(h, n, nj);

9 W ←W ∪ {(~xi, yi)};
10 h← INC(h, n, ni);

11 Function INC(h, n, ni)
12 Update n← n+ 1;
13 Update ni ← ni + 1;
14 return

n−1
n

(
h− log2

n−1
n

)
− ni

n
log2

ni
n

+ ni−1
n

log2
ni−1

n

15 Function DEC(h, n, ni)
16 Update n← n− 1;
17 Update ni ← ni − 1;
18 return

n+1
n

(
h+ ni+1

n+1
log2

ni+1
n+1

− ni
n+1

log2
ni

n+1

)
+ log2

n
n+1

claimed to be biased towards features with bigger domains, its
computation is fast, trivial and feasible over a sliding window.

In this paper, we adopted the conditional entropy as a
discriminative measure for features. Conditional entropy is an
information theoretic measure that quantifies how “impure”
a feature Di is regarding the class Y . This entropy can be
computed according to Eq. 3, where q iterates over all possible
values of a feature Di.

H(Y |Di) =
∑
q∈Di

P [q]×H(Y |Di = q) (3)

The smaller the value of entropy H(Y |Di), bigger is
the depiction of Y by Di. Therefore, features with smaller
entropies predict Y better.

Algorithm 1 presents the computation of the H(Y |Di = q)
conditional entropy given a sliding window. For the sake of
brevity, proofs for formulas used in Alg. 1 were omitted, thus,
the reader is referred to [12] for details.

Clearly, one of the drawbacks of picking entropy as a mea-
sure is that is it unable to work with numeric features unless
they are discretized. Since minimum (min) and maximum
(max) values of features in streaming scenarios are unknown
a priori, every time they change during the processing of
the stream, a new discretization must be performed. In our
proposal, we chose to discretize features Di in 10 bins of
equal sizes, each with a maxDi−minDi

10 length.

C. kNN-FW

k-Nearest Neighbor with Feature Weighting (kNN-FW) is
an extension to the original kNN algorithm that performs

2187

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

dynamic feature weighting to overcome feature drifts. kNN-
FW maintains conditional entropies H(Y |Di = q) updated
accordingly a sliding window of size W .

Whenever an instance (~xi, yi) is enqueued or dequeued
from buffer, conditional entropies are updated accordingly to
Alg. 1. This allows anytime computation of entropy since all
H(Y |Di = q) values are updated and can be accessed inO(1).

To label instances ~xt, kNN-FW compares it to buffered
instances. In comparison to the original kNN, our proposal
assumes an adaptation to the conventional Euclidian distance,
which is weighted given the discriminative power provided by
conditional entropy. Since smaller values of entropy highlight
discriminative features, the differences in Eq. 4 are weighted
with the complement of entropy, i.e. w(Dk) = 1−H(Y |Dk).

d(~xi, ~xj) =

√ ∑
Dk∈D

w(Dk)× (~xi[Dk]− ~xj [Dk])
2 (4)

Due to the dynamic computation of entropy, kNN-FW is
expected to dynamically assign weights to features according
to their current discriminative power. During non-feature-
drifting streams, it is expected that irrelevant features are
unaccounted for during voting, while discriminant features are
emphasized. In feature-drifting cases, features that become, or
cease to be, relevant to the learning task will be promptly
detected by changes in their entropies, implying in changes in
features’ weights.

D. A Note on Computational Complexity

In comparison to the original kNN, our proposal performs
computations of the entropy of features as new instances
arrive. The cost for classifying an instance remains the same
(O(Wd)) since the probabilities needed for entropy compu-
tation can be promptly obtained in O(1). Nevertheless, when
enqueueing and dequeuing an instance from the buffer, kNN-
FW must update its conditional entropies, each with an O(d)
cost.

In terms of memory space, besides storing an instance
buffer, kNN-FW must also maintain conditional entropies’
counters with a cost of O(cd), where c = |Y |. These are
important overheads that must be accounted for since the usage
of kNN-FW becomes unfeasible in certain streams where d is
big (e.g. SPAM experiment in Sec. V-D).

V. EXPERIMENTAL RESULTS

In this section, we assess accuracy, processing time and
memory usage of kNN-FW and compare it to other streaming
classification algorithms. Firstly, we introduce both synthetic
data generators and real-world datasets used in the evaluation.
Later, we state the experimental protocol adopted during
experiments and comparison. Finally, we discuss the results
obtained.

A. Synthetic Data

In this section, we present the synthetic data generators used
in experiments. In all cases, streams are generated with 5%
noise and the relevant subsets of features in prior and posterior
concepts differ.

1) SEA-FD: To verify the impact of feature drifts in exist-
ing streaming learning algorithms, the first synthetic generator
used is SEA-FD [5]. SEA-FD is an extension to the SEA
generator [13] and it simulates streams with d > 2 uniformly
distributed features given by the user, where ∀Di ∈ D, Di ∈
[0; 10] and only two randomly picked features are relevant to
the concept to be learned: Dω and Dζ . As in [13], the class
value y is given according to Eq. 5, where θ is a user-given
threshold. In our experiments, we adopted θ = 7 since this
value is widely used in other works [14], [1].

y =

{
1, Dω +Dζ ≤ θ
0, otherwise

(5)

2) Binary Generator with Feature Drift (BG-FD): The
Binary Generator with Feature Drift (BG-FD) generates in-
stances composed by boolean features [15]. From the entire
set of features D, only a random subset D∗ ⊂ D is relevant
to the concept to be learned. Additionally, |D∗| = dr, where
dr < d is a user-given parameter. Labels of instances are given
according to Eq. 6 and labels are evenly likely to occur.

y =

 1,
∧

Di∈D∗
Di

0, otherwise
(6)

3) LED Generator: The LED generator (LED), early intro-
duced in [16], generates instances with 24 boolean features,
17 of which are irrelevant. The goal is to predict the digit
displayed on a seven-segment LED display, where each feature
has a 10% chance of being inverted. Our experiments do not
encompass feature drifts using this generator, yet, it is used
to assess the performance of classifiers since it does possess
several irrelevant features.

B. Real-world Data

Jutting synthetic data, our proposal is also evaluated along
real-world datasets. We refrain from providing a detailed
description of each dataset for the sake of brevity and due to
their broad usage by the community. For more details about
the datasets, we refer the reader to the original publications:
Electricity (ELEC) [17], Forest Covertype (COV) [18] and
Spam Corpus (SPAM) [19].

C. Experimental Protocol

In this section we present the experimental protocol adopted
in experiments, focusing on the feature drift framework,
parametrization, evaluation and statistical testing.

2188

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

1) Feature Drift Framework: To promote synthetic feature
drifts in streams, we adopted the set-up provided in the
Massive Online Analysis (MOA) framework [20]. This set-
up treats a drift as a combination of two pure distributions
that characterizes concepts before and after the drift. In the
case of feature drifts, each of the concepts is defined by
different subsets of relevant features. Finally, a window size
w determines the length of the drifting region where instances
can belong to both prior and posterior concepts.

2) Algorithms and Parametrization: We present results for
the original kNN, a kNN aided with a concept drift detector,
namely Adaptive Sliding Windowing (ADWIN) [21] and our
proposal: kNN-FW. Also, we evaluate classifiers with different
biases: an Updatable Naive Bayes (NB) and a Hoeffding Tree
(HT) [22]. Both kNN and kNN-FW assume the same parame-
ters and values: k = 3 and W = 1, 000. We acknowledge that
determining an optimal value for both parameters is an open
issue that relies on each stream domain and their impact is not
assessed in this paper. We forfeit from providing an analysis of
the impact of the window size W since it has the same impact
as in the conventional kNN algorithm, i.e. bigger windows do
not allow rapid drift recovery and result in increases in time
processing and memory consumption, while smaller windows
impact accuracy in stable regions of the stream and provide
quicker classification time and lessened memory space usage.
Remaining algorithms’ parameters are set according to the
values presented in original papers.

All synthetic data streams have a length of 100,000 in-
stances and 50 features. SEA-FD and BG-FD possess a feature
set size |D| = 50 and 9 equally distributed drifts. Streams with
a (A) suffix contain abrupt drifts, i.e. w = 1, while streams
with a (G) suffix are gradual, where w = 1000.

3) Evaluation and Statistical Testing: Accuracy is mea-
sured using the Prequential test-then-train method. Although
claimed as pessimistic, the Prequential procedure [23] mon-
itors the evolution of the performance of models over time
given a sliding window. The window size was set to 1,000
instances for the synthetic experiments and 100 for real-world
datasets. Processing time is measured as the time that the
algorithms spend in the processor (in seconds) and memory
usage is presented in RAM-Hours, where 1 RAM-Hours
equals 1 GB of RAM used per hour.

All experiments’ results presented in this paper were ob-
tained on an Intel Xeon CPU E5649 @ 2.53GHz×8 computer
with 16GB of memory and under the Massive Online Analysis
(MOA) framework [20].

Statistical differences are verified according to Friedman’s
and Nemenyi’s non-parametric tests [24] with a confidence
level of 95% (α = 0.05) and results are reported with Critical
Differences (CD) graphics.

D. Discussion

In Tabs. I, II and III we present the results obtained during
experiments in terms of accuracy, processing time and memory
usage, respectively. Tab. I presents the average prequential
accuracy obtained, where one can see that kNN-FW presents

TABLE I: Accuracy obtained during experiments.

Experiment kNN kNN-FW kNN-ADWIN NB HT
SEA-FD(A) 75.28 85.26 75.23 79.83 80.82
SEA-FD 75.28 84.25 75.20 79.83 80.80
BG-FD(A) 86.00 90.12 86.11 69.99 78.21
BG-FD 85.70 89.51 84.68 69.99 78.25
LED 78.54 82.81 59.08 86.64 86.47
COV 91.20 94.53 86.76 60.51 80.29
ELEC 78.32 90.16 77.84 73.40 79.23
SPAM 78.14 84.52 84.15 75.22 79.32

TABLE II: Processing time (s)
Experiment kNN kNN-FW kNN-ADWIN NB HT
SEA-FD(A) 112.08 241.44 203.69 1.98 4.37
SEA-FD 113.67 206.58 199.35 1.93 4.27
BG-FD(A) 102.41 212.43 176.51 1.42 3.84
BG-FD 104.04 171.10 161.46 1.49 3.64
LED 49.50 52.15 25.91 0.79 1.41
COV 304.71 757.32 358.06 27.16 268.94
ELEC 8.35 12.96 13.62 0.53 1.45
SPAM 6150.98 8379.30 5621.52 283.28 262.03

higher accuracy rates in most cases, especially when compared
to the original kNN, where gains range from 3.33% to 11.84%
and are in average 6.59% higher. In order to clarify the results
obtained, we present in Figs. 1 and 2 the prequential accuracy
obtained by algorithms during experiments. We omit plots for
SEA-FD(A) and BG-FD(A) experiments since they are similar
to the ones provided in SEA-FD(G) and BG-FD(G). Based
on the results obtained, we highlight the high adaptability
to feature drifts in SEA-FD and BG-FD experiments and the
boost in the accuracy of kNN-FW to other algorithms in real-
world data. Also, the usage of ADWIN has not allowed kNN
to overcome feature drifts (Figs. 1a through 1e), showing
that ADWIN is incapable of promptly detecting this kind of
drift. One example of ADWIN’s inefficiency is given in the
LED experiment. In this experiment, no drifts occur, however,
ADWIN still detects several false positives, thus, performs
several kNN resets. These resets jeopardize prediction accuracy
since it frees up the buffer of instances during stable areas.

We highlight the results obtained by HT (Figs. 2a through
2f). Although its learning strategy is based on feature selection
for building the decision tree, it does not embed strategies to
overcome feature drifts, therefore, presents noticeable accu-
racy drops in these scenarios.

With empirical evidence, we verify that kNN-FW is able
to overcome both feature drifts and irrelevant features better
than a conventional kNN classifier, highlighting the need for
future works in feature selection for data streams and feature
drift detection and adaptation. The only experiment where our
proposal was unable to achieve the highest prediction rates
was the LED experiment. We claim that this occurred since
LED has several irrelevant features that, when combined with
noise rates, damage the computation of entropy.

Finally, with the aid of Friedman’s and Nemenyi’s tests,
we were able to determine that {kNN-FW, HT} � {kNN,
kNN-ADWIN, NB} with a 95% confidence level in terms of
accuracy (Fig. 3).

2189

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

0.
2

0.
4

0.
6

0.
8 1

·1
0
5

70

80

90

Instances

A
cc

ur
ac

y
(%

)

(a) SEA-FD(G)
0.
2

0.
4

0.
6

0.
8 1

·1
0
5

70

80

90

Instances

(b) BG-FD(G)

0.
2

0.
4

0.
6

0.
8 1

·1
0
5

60

80

Instances

(c) LED

2 4
·1
0
5

60

80

100

Instances

(d) COV

1 2 3 4
·1
0
4

70

80

90

Instances

(e) ELEC

2,
00
0

4,
00
0

6,
00
0

8,
00
0

60

80

100

Instances

(f) SPAM

kNN kNN-FW kNN-ADWIN

Fig. 1: Prequential accuracies (%) for kNN-based algorithms.

TABLE III: RAM-Hours (GB-Hour)
Experiment kNN kNN-FW kNN-ADWIN NB HT
SEA-FD(A) 6.03× 10−6 1.51× 10−5 2.56× 10−5 1.50× 10−8 6.17× 10−7

SEA-FD 2.77× 10−7 8.21× 10−7 2.47× 10−5 1.33× 10−8 6.07× 10−7

BG-FD(A) 4.12× 10−5 5.21× 10−5 2.27× 10−5 1.28× 10−8 6.07× 10−7

BG-FD 1.40× 10−5 5.25× 10−5 1.87× 10−5 1.35× 10−8 5.69× 10−7

LED 8.68× 10−5 5.20× 10−4 6.01× 10−7 5.56× 10−9 1.48× 10−8

COV 3.44× 10−6 9.43× 10−6 3.52× 10−5 3.67× 10−7 1.32× 10−4

ELEC 1.30× 10−5 2.67× 10−5 4.50× 10−7 7.59× 10−10 3.40× 10−8

SPAM 3.32× 10−1 5.33× 10−1 3.62× 10−1 2.08× 10−3 1.38× 10−3

Naturally, keeping track of entropies incrementally as the
stream progresses has its cons. In Tabs. II and III, we present
processing time and memory usage of both classifiers during
experiments, where one can see that kNN-FW is outperformed
by other algorithms in all cases. This result is expected since
kNN-FW has an extra computational complexity ofO(2d) (due
to enqueueing and dequeueing) in processing time and O(cd)
in memory space when compared to the original kNN. With
the aid of Friedman’s and Nemenyi’s tests, we are able to
determine that {NB, HT} � {kNN, kNN-ADWIN, kNN-FW}
for both processing time and memory space usage (Figs. 4 and
5).

VI. CONCLUSION

This paper presented kNN-FW, a k-nearest neighbor al-
gorithm with dynamic feature weighting. With the track of
features’ discriminative power at all moments of the stream
by using a sliding window, kNN-FW is able to dynamically
assign weights for features as the stream passes using en-
tropy. Entropy is computed along a sliding window, which
enables the computation of features’ discriminative powers as
new instances arrive. Empirical evidence shows that kNN-FW
presents important gains in accuracy in both synthetic feature
drifting streams and in real-world datasets. This shows the
need for future works in feature drift detection and adaptation.

A starting point would be the evaluation of other feature dis-
criminative power metrics (e.g. Correlation, Gain Ratio, Infor-
mation Gain, χ2, Gini Index), nevertheless, their incremental
and adaptive versions are non-trivial. We thus intend to further
investigate the combination of our proposed metric to compute
more sophisticated metrics (e.g. Information Gain, Gain Ratio
and Symmetrical Uncertainty) and their combination with drift

detectors (e.g. ADWIN [21]), so feature drifts can be detected
with statistical confidence.

Finally, the gain obtained in accuracy comes at the expense
of both processing time and memory space, yet, its differ-
ence to the conventional kNN is not statistically significant,
therefore, feasible and recommended when nearest neighbor
learning is a choice.

Since the classification time of an instance by kNN-FW
requires O(Wd), in future works we intend to investigate the
adoption of dynamic feature selection techniques to diminish
both training and classification feature spaces to d′, where
d′ � d, impacting in a O(Wd′) processing time complexity.
This is important in high-dimensional streams, e.g. Spam
Corpus, where d is enormous and very few of them (d′) are
relevant to the concept to be learned.

ACKNOWLEDGMENT

This project was financially supported by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES)
through the Programa de Suporte à Pós-Graduação de
Instituições de Ensino Particulares (PROSUP) program.

REFERENCES

[1] J. P. Barddal, H. M. Gomes, and F. Enembreck, “SFNClassifier: A scale-
free social network method to handle concept drift,” in Proceedings of
the 29th Annual ACM Symposium on Applied Computing (SAC), ser.
SAC 2014. ACM, March 2014.

[2] ——, “Advances on concept drift detection detection in regression
tasks using social networks theory,” International Journal on Natural
Computing Research, pp. 1–14, 2015.

[3] ——, “SNCStream: A social network-based data stream clustering
algorithm,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing (SAC), ser. SAC 2015. ACM, April 2015.

[4] J. a. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2523813

[5] J. P. Barddal, H. M. Gomes, and F. Enembreck, “Analyzing the impact
of feature drifts in streaming learning,” in Proceedings of the 22th In-
ternational Conference on Neural Information Processing, ser. ICONIP
2015. Springer, November 2015.

[6] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan, “Heterogeneous
ensemble for feature drifts in data streams,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7302, pp. 1–12. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-30220-6\ 1

2190

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

0.
2

0.
4

0.
6

0.
8 1

·1
0
5

70

75

80

85

90

Instances

A
cc

ur
ac

y
(%

)

(a) SEA-FD(G)
0.
2

0.
4

0.
6

0.
8 1

·1
0
5

60

80

100

Instances

(b) BG-FD(G)

0.
2

0.
4

0.
6

0.
8 1

·1
0
5

80

85

90

Instances

(c) LED

2 4
·1
0
5

60

80

100

Instances

(d) COV

1 2 3 4
·1
0
4

60

80

Instances

(e) ELEC

2,
00
0

4,
00
0

6,
00
0

8,
00
0

40

60

80

100

Instances

(f) SPAM

kNN-FW NB HT

Fig. 2: Comparison of prequential accuracies (%) with different biased classifiers.

12345
CD = 2.15

kNN-FW
HT
kNN

NB
kNN-ADWIN

Fig. 3: Critical differences chart for accuracy comparison.

12345
CD = 2.15

NB
HT

kNN-FW
kNN-ADWIN

kNN
Fig. 4: Critical differences chart for CPU time comparison.

12345
CD = 2.15

NB
HT

kNN
kNN-FW

kNN-ADWIN
Fig. 5: Critical differences chart for RAM-Hours comparison.

[7] J. P. Barddal, H. M. Gomes, and F. Enembreck, “A survey on feature drift
adaptation,” in Proceedings of the International Conference on Tools
with Artificial Intelligence. IEEE, November 2015.

[8] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr.
1996.

[9] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, 1991.

[10] C. C. Aggarwal, Ed., Data Classification: Algorithms and Applications.
CRC Press, 2014. [Online]. Available: http://www.crcnetbase.com/doi/
book/10.1201/b17320

[11] C. Alippi, G. Boracchi, and M. Roveri, “Just in time classifiers:
Managing the slow drift case,” in Neural Networks, 2009. IJCNN 2009.
International Joint Conference on, June 2009, pp. 114–120.

[12] B. Sovdat, “Updating formulas and algorithms for computing
entropy and gini index on time-changing data streams,” CoRR, vol.
abs/1403.6348, 2014. [Online]. Available: http://arxiv.org/abs/1403.6348

[13] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-classification,” in Proc. of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM SIGKDD,
Aug. 2001, pp. 377–382.

[14] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Machine Learning and Knowledge Discovery
in Databases, ser. Lecture Notes in Computer Science, J. L. BalcÃ¡zar,
F. Bonchi, A. Gionis, and M. Sebag, Eds. Springer Berlin Heidelberg,
2010, vol. 6321, pp. 135–150.

[15] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proceedings of the Seventeenth International
Conference on Machine Learning, ser. ICML ’00. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 359–366. [Online].
Available: http://dl.acm.org/citation.cfm?id=645529.657793

[16] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[17] M. Harries and N. S. Wales, “Splice-2 comparative evaluation: Electric-
ity pricing,” 1999.

[18] P. Kosina and J. Gama, “Very fast decision rules for multi-class
problems,” in Proceedings of the 27th Annual ACM Symposium on
Applied Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012,
pp. 795–800. [Online]. Available: http://doi.acm.org/10.1145/2245276.
2245431

[19] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Dynamic feature space
and incremental feature selection for the classification of textual data
streams,” in in ECML/PKDD-2006 International Workshop on Knowl-
edge Discovery from Data Streams. 2006. Springer Verlag, 2006, p.
107.

[20] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” The Journal of Machine Learning Research, vol. 11,
pp. 1601–1604, 2010.

[21] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” in In SIAM International Conference on Data
Mining, 2007.

[22] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[23] J. Gama and P. Rodrigues, “Issues in evaluation of stream learning
algorithms,” in Proc. of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM SIGKDD, Jun. 2009,
pp. 329–338.

[24] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. New Jersey: Wiley, 2009.

2191

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:56:38 UTC from IEEE Xplore. Restrictions apply.

