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Télécom ParisTech
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Abstract—Peer-to-peer (P2P) lending is a global trend of finan-
cial markets that allow individuals to obtain and concede loans
without having financial institutions as a strong proxy. As many
real-world applications, P2P lending presents an imbalanced
characteristic, where the number of creditworthy loan requests
is much larger than the number of non-creditworthy ones. In
this work, we wrangle a real-world P2P lending data set from
Lending Club, containing a large amount of data gathered from
2007 up to 2016. We analyze how supervised classification models
and techniques to handle class imbalance impact creditworthiness
prediction rates. Ensembles, cost-sensitive and sampling methods
are combined and evaluated along logistic regression, decision
tree, and bayesian learning schemes. Results show that, in
average, sampling techniques outperform ensembles and cost-
sensitive approaches.

I. INTRODUCTION

Peer-to-peer (P2P) lending is a global trend of financial

markets. It allows individuals to obtain and concede loans

without having a financial institution as a strong proxy. As

a result, lenders usually earn higher return rates compared

to conventional savings and investment products offered by

banks, while borrowers can obtain credit with lower interest

rates, even after the P2P company takes its fee for matching

the two parts of the lend and also for providing a credit check

of the borrower.

In America, one of the biggest P2P lending online matching

companies is Lending Club1. As stated on its website, the

consumer lending market has surpassed 3 trillion dollars, so

there is room for investors to widen their range of investments.

In addition to the results provided by P2P lending companies

regarding the creditworthiness of potential borrowers, most of

the data about loan requests is also provided. These data can be

useful for many things, such as tracking how groups of users

behave across loans and over time, but more importantly, to

generalize their behavior and learn automatic credit scoring

computational methods. In this context, machine learning

techniques are widely applied to learn creditworthiness models

for lending customers and they have shown reasonable success

1https://www.lendingclub.com

rates. Yet, one of the major limitations of these models is that

the ratio between classes is imbalanced, i.e. the number of

creditworthy and non-creditworthy customers greatly differs.

To deal with class imbalance, different strategies have been

proposed in the machine learning literature, and not many have

been applied in the context of P2P lending. These techniques

are divided in algorithm adaptation (tuning), ensemble-based,

cost-sensitive, and sampling techniques [1]. The goal of this

paper is to evaluate representative methods from each of the

aforementioned families, thus highlighting the best approaches

for P2P lending and pointing out existing gaps on the area.

As contributions of this paper, we cite: (i) the preparation of

a real-world P2P lending data set which is also made available

for the public, and (ii) a benchmark of several approaches

that cope with class imbalance applied to the context of P2P

lending default prediction.

This paper is divided as follows. Section II introduces the

P2P lending process and the data set used in this study. Section

III reviews related work on applying machine learning to P2P

lending and the approaches used. The benchmark takes place

in Section IV, where a variety of class imbalance techniques

are assessed across different learning algorithms. Finally, Sec-

tion V concludes this paper and presents envisioned future

works.

II. P2P LENDING

Peer-to-peer (P2P) lending is a trend in the financial market

that allows individuals to both obtain or concede loans. In

contrast to the traditional lending process, P2P lending allows

lenders to obtain higher return rates compared to savings and

investments offered by banks, at the expense of having higher

uncertainty whether a borrower will default or not.

To maximize the number of successful loans, investors use

historical data to learn which characteristics of borrowers

make them more susceptible to fully pay (in this work, we

assume these to be creditworthy) or to be charged off (non-
creditworthy). In addition to analytics, machine learning is
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also often applied to determine whether a customer is credit-

worthy automatically, where algorithms are fed with historical

data and are able to predict whether a borrower will fulfill its

debts with reasonable accuracy.

In this study, we work with a specific data set provided by

Lending Club. Lending Club is an online credit marketplace

with the goal of facilitating P2P personal and business loans in

the USA. By March 31st, 2017, Lending Club has participated

of the funding of more than $26B, and the data behind all these

loans are available for prospect investors2. Lending Club data

is provided in two different formats: one on the website, where

information about the outcome of loans is known (fully paid or

charged off), or via API, which is only available for investors

during the time of loan requests analyses. Our study is limited

to charged off and fully paid loans, where the former represent

loans that had payments delayed for more than 150 days and

the latter are paid up loans. Finally, to avoid leakage, only

the data that would be available upon API calls were used

in the experiments, and details about the selection of each

variable are available on the experiment repository. Below, the

steps taken to pre-process the data set are reported and the

entire script is made available at https://github.com/jaycwb/

resampling-p2p-lending.

A. Data set preparation

To prepare the Lending Club data set for our benchmark,

a script has been built to both format and preprocess it. All

the data available between 2007 and 2016 was downloaded

and merged into a single data set, where only data regarding

fully paid and charged off loans were kept since the other

possible loan outcomes are inconclusive and might change

in the future. Next, several features were removed since they

are continuously updated and their values are only available

after the loan has been conceded, meaning that they could bias

the classifier with privileged information (data leakage). String

features were either removed or converted into numeric ones,

when possible, and categorical ones were one-hot encoded.

Details about the treatment provided to each feature can

be found in the repository listed above. Finally, all features

and instances with more than 50% of the values missing,

and features with variability below 25% were removed. All

remaining missing values were then imputed with the mean,

for numeric features, or with the mode, for categorical data.

As a result of this preparation step, the final data set

contains 578,331 instances (loan requests), such that 461,007

are “fully paid” (creditworthy) and 117,324 “charged off”

(non-creditworthy), showing class proportion rates of 79.71%

and 20.29% and 133 features plus the class label.

III. RELATED WORK

In this section, we report related works that tackle the

problem of applying machine learning in the context of P2P

lending. This section also highlights the intersection (or lack

thereof) of these works and the explicit handling of imbalanced

data sets.

2https://www.lendingclub.com/public/about-us.action

In [2] authors used a variation of Naive Bayes algorithm

for multi relational data (MRNB) to classify good and bad

borrowers using Prosper3 data, which is a P2P lending site

in U.S. The data used during experimentation are composed

of core credit and social network data. In their experiments,

authors managed to achieve 70.66% sensitivity and concluded

that these good results were due to the MRNB model being

able to reasonably combine card data with social network data.

In [3]–[5] authors presented experiments using Lending

Club data set. Authors used 3 sets of data obtained from

different periods in their analysis. The first set broadened

2007-2013 data, the second set 2012-2014 data, and the third

set 2013-2015 data. In [3] they used Logistic Regression (LG),

Naive Bayes, Support Vector Machine (SVM) and Random

Forest (RF). The LG classifier outperformed the other tested

classifiers if one takes into account the precision metric.

In [4] authors proposed an RF based classification method

for predicting borrower status. Out of all features available,

authors used only 15 of them in experiments and the procedure

behind their selection is unclear. Also, it is important to men-

tion that some of the features used, e.g. Revolving Utilization

Rate and Revolving to Income Ratio, were deprecated and are

no longer in use after December 2014. Using a 5-fold cross-

validation procedure, classifiers’ parameters were tuned and

different metrics were reported. As a result, authors concluded

that RF obtained superior results when compared to SVM,

Linear Regression, and k-Nearest Neighbors.

Finally, authors in [5] used the Lending Club data set to

verify which features were important and determined which

individuals were more likely to repay their debts with interest

and on time. They used precision and accuracy as measures

of performance and concluded that RF is the most appropriate

classifier to identify which borrowers would not pay their

debts on time, while a single Decision Tree was the best for

identifying creditworthy customers.

Despite the effort presented in above-mentioned works,

the class imbalance trait of this data set has been nearly

neglected. Imbalanced data are characterized by having many

more instances belonging to a certain class (majority class)

than others (minority classes). Hereafter, let us assume that a

binary-labeled data set is denoted by S, the minority class is

denoted by Smin ∈ S and the major class as Smaj ∈ S, such

that Smin ∩ Smaj = ∅ and Smin ∪ Smaj = S.

Since instances belonging to Smin rarely occur, the rules

for classifying these classes tend to be rare, undiscovered, or

ignored [1], [6]. Imbalanced learning problems can be either (i)

intrinsic, or (ii) extrinsic. Intrinsic imbalance occurs when the

problem is naturally imbalanced. For instance, rare diseases

[7], credit card fraud [7], oil spills in the ocean [8], spectral

classification of gamma rays [9], P2P lending [2]–[5], among

others. In contrast to intrinsic imbalance, extrinsic imbalance

occurs when the data is naturally balanced, however, the data

acquisition or handling processes cause the imbalance.

3https://www.prosper.com/
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There are multiple alternatives to handle class imbalance.

The most recurring approaches are often categorized as: en-

sembles learners [10], [11], cost-sensitive learning [12], [13]

and sampling techniques [14]–[16]. In the following sections,

we describe these approaches to imbalanced data sets, which

are later used in our analysis in Section IV. It is also important

to mention that, to the best of our knowledge, several of the

listed techniques have not yet been used in the P2P lending

context.

A. Ensemble

The rationale behind ensembles is to induce a set of

diverse classification models and then combine their decisions

while predicting unlabeled instances. The main motivation to

combine classifiers is to improve the overall generalization

ability since each classifier is expected to misclassify different

instances since each is training with a different and limited

amount of data. In this section, we focus on explaining

ensemble approaches that are often applied to imbalanced

learning. For the sake of brevity, none of these methods will

be thoroughly discussed, and thus, readers interested on the

topic are referred to the works of [17], [18].

In [19] and [4], authors compared the ensemble-based

Random Forest (RF) [20] against some standard classifiers on

imbalanced data sets. In the first work, authors used 10 generic

imbalanced data sets for the experiments and assessed the

impact of parameter tuning. Their recommendation is that the

parameters for RF, i.e. number of trees and features, must be

adjusted for each data set. In the second work, authors used the

Lending Club data broadening January 2012 and September

2014 and their goal was to identify the creditworthiness of

a potential loan borrower. Similarly to the study mentioned

above, the RF classifier outperformed the others.

B. Sampling

Unlike ensemble and cost-sensitive approaches, sampling

techniques are designed to run before learning, it is, during

pre-processing. Sampling techniques change the data distri-

bution so that standard algorithms focus on the cases that

are more relevant to the user. One of the main advantages

of sampling methods it that they can be used with any

learning method, and they are divided in over-sampling, under-

sampling and hybrid methods [21].

In [22], authors conclude that despite the fact that the RF is

an interesting classifier to deal with class imbalance, sampling

can further improve its results in the context of Bioinformatics

data.

1) Oversampling: Oversampling methods increase the

number of instances of Smin via the creation of synthetic

instances until classes are balanced or nearly balanced. After

the creation of new instances, the minority class Smin, which

was originally underrepresented, may exert a greater influence

on learning and on future classifications. Most of the oversam-

pling techniques derive from the seminal Synthetic Minority
Over-sampling Technique (SMOTE, hereafter denoted as SM

for the sake of brevity) [14], and are often implemented as a

unique package. In [23], authors observed that in the clinical

data sets studied, the oversampling methods outperformed

undersampling techniques.

2) Undersampling: The undersampling techniques, on the

other hand, aims to reduce the number of instances from the

majority class Smaj by removing instances from this class.

Undersampling techniques often act in two ways, by removing

noisy instances, or simply reducing instances from Smaj using

heuristics or even randomly.

In [24], authors reported that for rare diseases data sets, the

use of the RF combined with the Random Undersampling (RU)

improves the base classifier area under the precision recall

curve (AUPR) with a linear model by 40%.

Both undersampling and oversampling have drawbacks. Un-

dersampling techniques may cause information loss during the

sampling process once it is prone to delete relevant instances.

On the other hand, oversampling techniques such as SMOTE

(SM) may result in class overlaps since it has no guarantees

that the synthetic samples will be generated in a region of the

feature space that is not a borderline or even a region that is

crowded with instances from Smaj .

C. Cost-sensitive

While sampling techniques attempt to balance the dis-

tribution between classes by considering the representative

proportions of the class examples in the distribution, cost-

based learning methods consider the costs associated with

misclassification examples [25]. Instead of creating balanced

distributions of data through different sampling strategies,

cost-based learning targets the unbalanced learning problem

by using different cost matrices describing the costs for

misclassifying instances from Smaj and Smin [26].

In [27], authors tested different variants of AdaBoost4 in

4 imbalanced data set from the medical field. In most of the

scenarios reported, the cost-approach outperformed the base

classifiers tested.

In [28], authors used 14 imbalanced data sets and compared

different cost-sensitive approaches against sampling. They

concluded that for larger data sets, cost-sensitive learning

outperformed the sampling approaches.

IV. ANALYSIS

In this paper, we test different techniques to cope with

class label imbalance to improve classification rates in the

P2P lending context, specifically the Lending Club data set. To

have a comprehensive study, we present results using standard

classifiers, various sampling techniques, cost-based methods

and ensemble classifiers.

Following the framework proposed in [29], this analysis

is organized in two steps: (i) an intra-family evaluation to

determine the best performing approaches, and (ii) an inter-

family comparison to find out the fittest approach for this P2P

lending data set.

4AdaBoost is an ensemble-based method, however, it has been listed in the
cost-sensitive learning section since it is built on the notion of misclassification
costs.
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A. Experimental Protocol

As previously discussed, we analyze mainly three different

approaches to handle class imbalance: ensemble-based, cost-

sensitive and sampling techniques. Also, we include results

using the same classifiers without sampling or costs and these

are assumed to be our baseline models.

Evaluating imbalanced data sets is not a simple task. The

use of traditional metrics in imbalanced domains can lead

to sub-optimal classification models and produce misleading

conclusions [21]. This occurs since accuracy depends on label

distribution. For instance, let us assume a problem where the

distribution between classes in a data set is Smaj = 0.8 and

Smin = 0.2 and we have a classifier that only guesses Smaj . In

this scenario, we would obtain a reasonably high accuracy rate

(80%), yet, the classifier would not correctly classify a single

instance from Smin. To avoid this type of issue, we proceed

with the Area Under the ROC curve (AUROC), specificity

and sensibility as measures of classification quality, since they

known to be more suitable for imbalanced data sets [21].

We split the data into two stratified data sets: a training set

Xtrain and a test set Xtest, with 70% and 30% of the data,

respectively. Our validation process using Xtrain and Xtest is

detailed as follows:

• Xtrain: This data set is used to optimize the parame-

ters of each of the previously mentioned methods. The

tuning process performed adopts a 5-fold stratified cross-

validation scheme. Tuning was performed to optimize

both the parameters for classifiers and sampling tech-

niques. The metric chosen for tuning classifiers is AU-

ROC, since it accounts for the classification rates of both

classes. At this point, it is important to highlight that for

the sampling experiments, we were unable to tune and

train classifiers using the entire Xtrain subset, given the

SM complexity of O(n2m). Therefore, these experiments

use 1% and 5% sub-samples of this subset to tune and

train classifiers and sampling methods.

• Xtest: Given the tuned versions of the classifiers and

techniques obtained from the training set, these are then

used in another 5-fold stratified cross-validation scheme

over Xtest. The results listed in the following sections

are the averages obtained during this step.

All the methods used here follow the implementation pro-

vided by sklearn5 and imbalanced-learn6 Python packages.

Friedmans statistic and Nemenyi post hoc tests were used

to test for significance of AUROC differences between the

classifiers.

B. Baseline classifiers

The classifiers used in this study are Decision Tree, Logis-

tic Regression, and Gaussian Naive Bayes, aiming at using

methods based on different assumptions. These algorithms

are further discussed throughout the rest of this section and

parameters are listed in Table I.

5http://scikit-learn.org/stable/
6http://contrib.scikit-learn.org/imbalanced-learn/

TABLE I
PARAMETERS FOR GRID SEARCH OF BASELINE CLASSIFIERS

Classifier Parameter Values

DT

criterion gini, entropy
splitter best, random
min samples split 2, 10, 20
max depth None, 2, 5, 10
min samples leaf 1, 5, 10
max leaf nodes None, 5, 10, 20
class weight balanced, {0: 1.3}, {0: 1.5}, {0:

1.7}, {0: 2}, {0: 2.3}, {0: 2.5},
{0: 2.7}, {0: 3}, {0: 3.3}, {0:
3.5}, {0: 3.7}, {0: 4}

LG

C 0.001, 0.01, 0.1, 1, 10, 100, 1000
solver newton-cg, lbfgs, liblinear, sag
class weight balanced, {0: 1.3}, {0: 1.5}, {0:

1.7}, {0: 2}, {0: 2.3}, {0: 2.5},
{0: 2.7}, {0: 3}, {0: 3.3}, {0:
3.5}, {0: 3.7}, {0: 4}

GNB
priors None, [0.1, 0.9], [0.2, 0.8], [0.3,

0.7], [0.4, 0.6], [0.5, 0.5], [0.6,
0.4], [0.7, 0.3], [0.8, 0.2], [0.9, 0.1]

Values listed in bold are the optimal ones. The class weight parameter has
been used and optimized only during cost-sensitive experiments.

Decision Tree. A decision tree (DT) uses a hierarchical

representation for classification where nodes represent tests

over the attributes while leaves represent the classes. It is built

usually in two stages: tree building and tree pruning. In the

first, it recursively splits the training data set based on a locally

optimal criterion until all (or most) of the records belonging to

each of the partitions bear the same class label [1]. As trees are

prone to overfitting [30], the pruning stage removes branches

that provide little classification power and usually allow the

tree to generalize better. All the parameters were tuned for

each experiment excluding class weight, that was just used at

the cost-sensitive experiments.

Logistic Regression. Logistic regression (LG) is a regres-

sion model where the dependent variable (class) is categorical

[31]. There are variants for binary and multi-class tasks. For

the binary task, it creates a linear model based on a sigmoid

function that is used to estimate the probability of a binary

response (in our case, fully paid or charged off) based on the

input features.

Gaussian Naive Bayes. Naive Bayes is a probabilistic clas-

sifier that assumes independence between the input features.

To cope with numeric features one commonly used approach

is to use a Gaussian distribution for estimating the features

distributions. The ‘tunable’ hyper-parameter of GNB is the

priors probabilities of the classes, which was used only for

the cost-sensitive experiments.

C. Ensemble classifiers

Ensemble based methods are often used to cope with

imbalanced data sets. In our experiments we have used three

ensemble methods: boosting, bagging and random forests. All

ensemble-based classifiers adopted a decision tree as the base

classifier. There are many ways to use these ensembles for

imbalanced learning, one common approach is to combine

them with other techniques such as cost-sensitive or sampling
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TABLE II
PARAMETERS FOR GRID SEARCH FOR ENSEMBLES AND SAMPLING

Method Parameter Values

AdaBoost
n estimators 10, 50, 100
learning rate 0.1, 1, 2
algorithm SAMME, SAMME.R

Bagging
n estimators 10, 50, 100
max samples 0.10, 0.25, 0.5, 0.75, 1.0
max features 0.10, 0.25, 0.5, 0.75, 1.0

RF
n estimators 10, 50, 100
max features None, auto, sqrt, log2
max depth None, 5, 10, 15

RU ratio 0.8, 09, 1.0

SM
kind regular, borderline1, borderline2
ratio 0.8, 09, 1.0

Values listed in bold are the optimal ones. For RU and SM the optimal
parameters differ for each classifier, so they are shown only in the

discussion

methods as in [32] or to rely on their original characteristics

[19]. Table II presents the hyper-parameters used for the

ensemble methods, which are further discussed as follows.

AdaBoost. The rationale behind boosting is that multiple

learners can be combined into a strong one by decreasing both

bias and variance. More specifically, learners are chained in

a way that each one is trained assigning more importance to

instances that were previously misclassified by other learners

[1]. By far, the most popular implementation of Boosting is the

Adaptative Boosting (AdaBoost) [33]. In imbalanced learning,

the goal is to bias the learning towards those misclassified

samples, which are often from the minority classes.

Bagging. Bagging (or bootstrap aggregating) [34] is an

ensemble method that trains multiple base models on inde-

pendent subsets of instances. These instances are drawn from

the original training set uniformly with replacement. Bagging

effectively reduces variance while decreasing the chances of

overfitting the model. Predictions are obtained by combining

the base models votes using a majority vote approach.

Random Forest. Random Forest (RF) classifier [35] is an

ensemble of unpruned classification trees, induced from boot-

straps of the training data. In contrast to conventional decision

trees, during the branching process, only a randomly selected

subset of features is evaluated [36]. As most classifiers, RF is

constructed to minimize the overall error rate. It means this

method is likely to be biased towards the majority class rather

than to the minority one.

D. Sampling techniques

SMOTE. SMOTE (SM) technique generate synthetic sam-

ples based in the observations from Smin. SMOTE is designed

to find the K-nearest neighbors (K ∈ N) for each xi ∈ Smin.

Then, one of those neighbors is randomly selected (x̂i) and its

distance from xi is multiplied by a random number δ ∈ [0, 1],
which results in a new vector (xnew), that is located between

xi and the selected neighbor.

In order to solve some problems introduced by regular SM

the SMOTE Borderline1 (SMBL1) and SMOTE Borderline2

TABLE III
RESULTS BASELINE CLASSIFIERS

Classifier Sensibility Specificity AUROC Train Inst. Test Inst.
DT 0.98 0.08 0.53 404830 173501

GNB 0.72 0.45 0.59 404830 173501
LG 0.98 0.07 0.53 404830 173501

(SMBL2) methods were proposed in [15]. While the regular

SM acts only Smin, these variants also take into account the

Smaj samples. The SMBL1 act by finding samples from Smin

that have more Smaj neighbors than Smin (risky samples) and

then generate the new synthetic samples near this instances,

in order to provide more neighbors bearing the same class

label. The SMBL2 follows the same steps as SMBL1, but it

does not generate instances based on risky samples from Smin

while taking into account instances from Smaj to determine

the borderline instead.

Random Undersampling. One of the most straightforward

techniques for removing instances is Random Undersampling

(RU), which remove random instances from the Smaj to the

desired level. This technique does not have parameters for

tuning but the desired ratio of balance.

The values used in our experiments for sampling methods

are available at Table II.

E. Discussion

Observing the results on the Table III, some conclusions can

be drawn about the baseline classifiers. Despite the fact that

GNB has no tuning parameters in these initial experiments,

it scored the highest AUROC and specificity. Thus, it is

important to highlight that despite the lower results obtained

by GNB in sensitivity, this classifier should still be considered

the best performing one since it accounts for both classes with

reasonable accuracy, as depicted by AUROC.

One of the factors that may have contributed to DT’s poor

performance is that no pruning rule was used. One evidence

that the DT has overfitted is that the optimized parameter

encountered for max depth was 10, max leaf nodes was None
and the min samples split to 2, which means that the DT

grew 10 levels at the vertical, there was no limit at the

horizontal growing according to max leaf nodes and it created

new nodes even if there are only two samples arriving at this

node. It means it lost it generality capability. The LG also

sheds evidence of overfitting, since the parameter C was tuned

to 1000, the highest tested value, which means it has weaker

regularization. In the end, no statistical difference between the

tested classifiers at the baseline experiments.

As in the results of the baseline classifiers, in the cost-

sensitive experiments, the GNB was the most stable classifier,

as seen in Table IV. The optimized parameters for the priors
parameter of the GNB was 0.6 for Smin and 0.4 for Smaj ,

while for DT and LG the optimized class weight gives a

weight 4 to Smin samples and 1 for Smaj . In the baseline

LG, the optimized parameter C was 1000, in this experiment

the optimized C was 100, which means that the classifier

gained generality. All other parameters were the same than
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TABLE IV
RESULTS COST-SENSITIVE CLASSIFIERS

Classifier Sensibility Specificity AUROC Train Inst. Test Inst.
DT 0.99 0.01 0.50 404830 173501

GNB 0.49 0.69 0.59 404830 173501
LG 0.99 0.02 0.51 404830 173501

TABLE V
RESULTS FOR ENSEMBLES

Classifier Sensibility Specificity AUROC Train Inst. Test Inst.
AdaBoost 0.98 0.08 0.53 404830 173501
Bagging 0.98 0.09 0.53 404830 173501

RF 0.98 0.10 0.54 404830 173501

TABLE VI
RESULTS FOR SAMPLING 1%

Classifier Sensibility Specificity AUROC Train Inst. Test Inst.
DT+RU 0.65 0.63 0.64 4050 173501

GNB+RU 0.61 0.59 0.60 4050 173501
LG+RU 0.75 0.53 0.64 4050 173501

DT+SM-BL2 0.94 0.18 0.56 4050 173501
GNB+SM-BL2 0.36 0.79 0.57 4050 173501
LG+SM-BL2 0.64 0.66 0.65 4050 173501

TABLE VII
RESULTS FOR SAMPLING 5%

Classifier Sensibility Specificity AUROC Train Inst. Test Inst.

DT+RU 0.62 0.66 0.64 20240 173501
GNB+RU 0.57 0.63 0.60 20240 173501
LG+RU 0.64 0.67 0.66 20240 173501
DT+SM 0.97 0.08 0.53 20240 173501

GNB+SM 0.37 0.79 0.58 20240 173501
LG+SM 0.69 0.62 0.65 20240 173501

the baseline experiment. In the other hand, the DT parameters

changed most. The parameters criterion, min samples leaf
and min samples split were tuned to gini, 1 and 20, while

at the baseline they were entropy, 10 and 2, respectively.

Both LG and DT deteriorate its performance at Smin with

this approach, while GNB decreases its performance at Smaj .

Despite the loss of performance at Smaj , GNB increase

its performance at Smin, keeping the same AUROC as the

baseline. As as the baseline experiment, the GNB stills the

most suitable classifier at cost-sensitive experiments and there

is no statistical difference between the tested classifiers.

The results in Table V show that none of tested ensemble-

based classifiers outperformed the baseline GNB for both

AUROC and Specificity. Following the results of [4], [5], the

best-performing method was RF. The optimal parameters for

n estimators for all tested ensembles was 100, which was the

highest tested value. Despite the RF being the best ensemble,

there is no statistic difference between the tested ensembles.

As mentioned earlier, due to the prohibitive computational

requirements of sampling techniques, only a subset of our

training set has been used. Two stratified variants have been

tested, the first using 1% of the available training data,

and another time with 5%.7 For the sampling techniques,

7It is important to highlight that bigger samples were tested, however, the
experiments ended up taking too long or causing system crashes.

increasing the number of training instances from 1% to 5%

did not show significant increases, as can be seen at Tables

VI and VII. Furthermore, for DT classifier with oversampling,

we observed unexpected results, where bigger training sets

resulted in smaller AUROC rates.

Despite that, when comparing the results of classifiers with

and without sampling techniques, our baselines were beaten

in all scenarios in terms of specificity and AUROC. The best

AUROC rate was obtained with LG+RU, using 5% of Xtrain,

which is quite similar to the one obtained by LG+SMBL2

using 1% of the training set. Also, LG is statistically better

than the other tested classifiers. The fact that the best result

was obtained with RU evidentiate that information loss is not a

problem with a data set of this size (20240 instances), however,

for oversampling techniques, training with 1% of Xtrain result

in many instances being generated at risky or borderline areas

of the features space. This becomes evident when one observes

that SMBL2 was the best oversampling technique for all tested

classifiers when using 1% of Xtrain, which is mainly due to

its cleaning steps to handle both risky and borderline instances.

While SMBL2 is better with 1%, regular SM is better with

5% of Xtrain, giving evidence that the borderline samples are

mostly observed because of lack of data.

With 1% of Xtrain the optimal ratios for RU were 0.8, 0.9

and 1.0 for LG, GNB and DT respectively. The optimal kind
for SM was borderline2, while the ratios were 0.9 for GNB

and DT and 1.0 for LG. When training with 5% of Xtrain the

optimal RU ratio for every tested classifier was 1.0, while for

SM, the optimal kind was regular and the ratios were 0.9 for

DT and LG, while for GNB it was 0.8.

V. CONCLUSION

Identifying whether a borrower will default or not is vital for

a P2P lending platform. This work presented a comprehensive

and systematic experimental analysis of the most recurring

approaches to handle the class imbalance problem. We il-

lustrated our experiments using the Lending Club data set.

The data preparation was thoroughly detailed and ensured that

no leakage (e.g. future information) occurred, thus rendering

a sustainable data set for future analyses. The classifiers

and techniques to handle imbalanced were discussed and the

models tuned using grid search, a process which was also

clearly discussed and reported in our experiments section.

Despite the fact that RF has been reported as being suitable

for predicting borrower‘s status with Lending‘s Club data, our

experiments show that neither RF nor any other method is

capable of overcoming GNB’s stability. GNB was also the

classifier which performs best with the cost-sensitive approach,

improving its correct classification of Smin samples, while

at the expense of the classification rates of Smaj samples.

The cost-sensitive approach was ineffective for DT and LG

classifiers.

To the best of our knowledge, there has been no previous

study that detailed the data set preparation and empirically

tested ensembles, cost-sensitive approaches and sampling tech-

niques using the Lending Club available data. With that said,
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this work could serve as a guide for future researches. As

future work, we intend to:

• Improve the pre-processing steps of our approach, so it

encompasses more solid dimensionality reduction tech-

niques, such as Principal Component Analysis;

• Test hybrid approaches to deal with class imbalance;

• Extend the gamut of tested classifiers to encompass deep

learning approaches;

• Consider this data set as a data stream, due to the data

set’s temporal characteristics.
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