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ABSTRACT
This work presents two different voting strategies for en-
semble learning on data streams based on pairwise combi-
nation of component classifiers. Despite efforts to build a
diverse ensemble, there is always some degree of overlap be-
tween component classifiers models. Our voting strategies
are aimed at using these overlaps to support ensemble pre-
diction. We hypothesize that by combining pairs of classi-
fiers it is possible to alleviate incorrect individual predictions
that would otherwise negatively impact the overall ensemble
decision. The first strategy, Pairwise Accuracy (PA), com-
bines the shared accuracy estimation of all possible pairs in
the ensemble, while the second strategy, Pairwise Patterns
(PP), record patterns of pairwise decisions during training
and use these patterns during prediction. We present empir-
ical results comparing ensemble classifiers with their original
voting methods and our proposed methods in both real and
synthetic datasets, with and without concept drifts. Our
analysis indicates that pairwise voting is able to enhance
overall performance for PP, especially on real datasets, and
that PA is useful whenever there are noticeable differences
in accuracy estimates among ensemble members, which is
common during concept drifts.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.2.6 [Artificial Intelligence]: Learning—
Concept learning, Induction

General Terms
Algorithms

Keywords
Data Stream Mining, Concept Drift, Ensemble Classifiers,
Machine Learning, Supervised Learning

1. INTRODUCTION

Data stream mining has become an important research
area during recent years due to the great volume of real-
time data generated by mobile phones, social networks and
various sensors currently available. Despite its benefits, data
stream mining is a difficult task, since it is subject to, vir-
tually, all problems that affect traditional data mining, e.g.,
absent values, and to specific issues that arise in a data
stream configuration, most notably concept drifts.

A data stream classification algorithm is presented to a
large, possibly infinite, amount of instances, each of which
are made available to the algorithm in a serialized fast-paced
way. On top of that, it is assumed that the underlying con-
cept is unstable, i.e., concept drifts are expected to occur.
Also, more recently [26] it was identified that some data
streams exhibit temporal dependences, such that instance
it+1 label is not independent of instance it label. Therefore,
a data stream classification algorithm must deal with con-
cept drifts, consider temporal dependences and process each
instance at least as fast as instances are made available to
it. Also, the algorithm should not store instances for future
processing, because it is not useful, nor practical to do so, as
older instances are less likely to represent the current con-
cept and the amount of instances tends to surpass available
memory.

To cope with these challenges, researches have thoroughly
adapted or wrapped existing classification methods to the
data stream context. Many of these methods are based on
ensembles of classifiers. Ensemble classifiers achieve high
accuracy through the combination of a diverse set of com-
ponent classifiers, such that (ideally) incorrect predictions
are obfuscated while correct predictions are highlighted. In
a data stream scenario, ensemble classifiers also have the
advantageous characteristic of being flexible, i.e., it is pos-
sible to replace (or remove) component classifiers based on
drift detector algorithms [5,6] or other methods [8,12,13,18].
Even though there is not a solid proof of a strong correlation
between accuracy and diversity [19,20], it is possible to ver-
ify that a set of homogeneous classifiers that always decide
for the same labels cannot achieve better (or worse) results
than one of them alone. It is important to note that diversity
is favorable as long as the individual decisions are properly
combined. Existing ensemble classifiers for data streams use
various techniques for combining predictions, such as major-
ity vote, weighted majority [21] and other methods [2,8,13]
that attempt to incorporate characteristics, mainly to ac-
count for concept drifts, that benefit classifiers adapted to
the current concept over others.
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Pairwise combination methods have been widely used as
alternatives to decompose multiclass into binary problems
[15, 23]. The voting strategies presented in this paper differ
from these, as we do not decompose the problem based on
the possible labels. Instead, our methods combine the out-
puts of a set of classifiers based on their shared estimated
accuracy (Pairwise Accuracy) or on weighted prediction pat-
terns incrementally updated during training (Pairwise Pat-
terns). In order to test these methods, we use an ensemble
structure that combines existing strategies for data stream
learning and an adapted version of the Leveraging Bagging
algorithm [5].

The remainder of this work is structured as follows. In
Section 2 we present ensemble methods for data stream clas-
sification, with focus on their combination and voting strate-
gies. Section 3 presents our voting strategies along with the
ensemble adaptations to use them. Section 4 presents empir-
ical results and evaluation of the proposed methods. Finally,
Section 5 concludes this paper and presents future work.

2. ENSEMBLE METHODS FOR DATA
STREAM CLASSIFICATION

The Online Bagging algorithm was introduced in [22] as
an adaptation of the batch ensemble classifier Bagging [7].
Originally, a bagging ensemble is composed of k classifiers,
which are trained with subsets (bootstraps) Nj of the whole
training set N . However, sampling usually is not feasible
in a data stream configuration, since it requires storing all
instances before creating subsets. Authors in [22] observe
that the probability of each instance to be selected for a
given subset is approximated by a Poisson distribution with
λ = 1, thus it is feasible to “simulate” bagging in an online
fashion by training each classifier k times on each instance,
such that k = poisson(1).

In [6] authors present two new ensemble methods, the
Adaptive-Size Hoeffding Trees (ASHT) Bagging and AD-
WIN Bagging. Both methods combine online bagging with
a strategy to cope with concept drift. ASHT Bagging uses
decision trees of varying sizes (levels) to adapt to concept
drifts (smaller trees), without compromising accuracy dur-
ing stable periods (bigger trees). ADWIN Bagging combines
online bagging with the Adaptive Window (ADWIN) [3] al-
gorithm for drift detection. Both algorithms use majority
vote.

The Leveraging Bagging algorithm [5] is another variant of
online bagging that adds more randomization to the input of
the ensemble. This randomization improvement is achieved
by increasing the resampling (online bagging with λ > 1).
Leveraging bagging uses ADWIN to detect concept drifts,
just as the methods presented in [6]. In the original pa-
per, authors present experiments that show that leveraging
bagging improves accuracy, but demands more memory and
processing time, when compared to other bagging variants.
To increase randomization, one can choose to use random
error correcting codes at the output of leveraging bagging.

The Weighted Majority (WM) algorithm [21] weights clas-
sifiers votes based on past performance, such that every clas-
sifier has a weight β, which is decreased every time it predicts
incorrectly. In order to account for evolving data streams
Kolter and Maloof introduced the Dynamic Weighted Ma-
jority (DWM) [18] algoritm, which uses the same voting
strategy than WM, with the addition of update heuristics

such as removing classifiers if their weight β is below a given
user threshold α.

The Online Accuracy Updated Ensemble (OAUE) [8] main-
tains a weighted set of component classifiers, such that the
weighting is given by an adaptation to incremental learning
of the weight function presented in [25]. Every d instances,
the least accurate classifier is replaced by a candidate clas-
sifier, which has been trained only in the last d instances.
Since there is no drift detection algorithm, OAUE relies on
this periodic reconstructs of the ensemble to adapt to con-
cept drifts.

The original Social Adaptive Ensemble (SAE) [12] algo-
rithm and its improved version (SAE2) [13] are focused on
three aspects of ensemble classifiers in a data stream sce-
nario: diversity, combination and adaptation. SAE and
SAE2, through different means, attempt to quantify diver-
sity, and combine individual predictions in a way that similar
classifiers predictions are grouped. Similarity between two
classifiers is measured as a function of their recent individ-
ual predictions over the same instances. Subgroups of classi-
fiers are identified through Weakly Connected Components
(SAE) or Maximal Cliques (SAE2). SAE2 weights classifiers
predictions in two levels. First, similar classifiers predictions
are weighted and combined to reflect the subgroup predic-
tion. The predictions of all subgroups are then weighted
and combined to obtain the overall ensemble prediction. To
weighed individual classifiers, SAE2 uses a weighting func-
tion based on accuracy during the current window (period).
The subgroup prediction is weighted according to the aver-
age weight of its members.

The Scale-free Network Classifier (SFNC) [2] is an ensem-
ble method that weights classifiers predictions based on an
adaptation of the scale-free network construction model. In
SFNC, classifiers are arranged in a graph structure, such
that classifiers with higher accuracy are more likely to con-
nect to recently added classifiers. Classifiers weighting is di-
rectly proportional to a user given centrality metric α, e.g.,
eigenvector. Since high accuracy classifiers usually receives
most of the connections, these are expected to have higher
influence on the overall decision. Although, this process is
non-deterministic and, theoretically, low accuracy classifiers
can become prominent as well. The worst classifier, in terms
of accuracy, is removed from the network every p instances,
and that triggers a rewiring process to maintain the graph
connected.

3. PAIRWISE BASED VOTING
Other works usually focus on building highly diverse en-

sembles [5, 12, 13, 22], although it is always expected some
degree of overlap between classifiers. The voting strategies
presented here are aimed at using these overlaps to support
ensemble prediction. In the following sections we present
the Pairwise Accuracy (PA) and the Pairwise Pattern (PP)
voting strategies, along with the adaptations needed for an
ensemble to incorporate them. PA and PP are based on the
hypothesis that by combining pairs of classifiers it is possi-
ble to alleviate incorrect individual predictions that would
impact the overall ensemble decision.

3.1 Pairwise Accuracy
Pairwise Accuracy (PA) combine classifiers into pairs, and

weights the predictions of these pairs based on their shared
estimated accuracy in the most recent instances. To esti-
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Un

Ie

I

Je J

Figure 1: Venn diagram representation of window n and
classifiers ci and cj correctly and incorrectly classified sub-
sets of instances

mate accuracy, we use a similar approach to the weighting
function in [13], such that individual and pairs of classifiers
are weighted incrementally and reset periodically according
to a fixed window (period). Formally, let Un be the set of all
instances from window n, I and J be subsets of Un, which
classifiers ci and cj were able to correctly classify, respec-
tively, and Ie and Je instances drawn from Un that ci and cj
incorrectly classified, respectively. Also, U t

n = I ∪J ∪ Ie∪Je
is the set of all instances from window n already presented to
ci and cj up to instance t. We define the pairwise estimated
accuracy, namely Sacc(ci, cj) (Equation 1), of classifiers ci
and cj , as the ratio of instances from U t

n that both correctly
classifies. Conversely, ci and cj shared estimated error rate,
namely Serr(ci, cj) (Equation 2), is defined as the ratio of
instances from U t

n that both incorrectly classifies.

Sacc(ci, cj) =
|I ∩ J |
|U t

n|
(1)

Serr(ci, cj) =
|Ie ∩ Je|
|U t

n|
(2)

We also define the accuracy estimation for a single classifier
ci during window n up to instance t, namely acc(ci) (Equa-
tion 3), as the ratio of instances from U t

n that ci was able to
correctly classify.

acc(ci) =
|I|
|U t

n|
(3)

Figure 1 shows a graphical representation of how sets I, J ,
Ie, Je could overlap.

In order to use Sacc and Serr during voting, we employ
a weighting function that prioritizes equal pairwise predic-
tions over individual predictions. For all ci classifiers in C at
window n, voting is performed pairwise, such that

(
C
2

)
pairs

are formed. Using a vector ~v to store weights during vot-
ing, such that every position in ~v corresponds to a possible
label and is initialized with 0, and assuming individual pre-
dictions are denoted by h(x), each pair of classifiers (ci, cj)
contributes to the overall prediction through Equation 4, if
ci prediction matches cj prediction, i.e., hi(x) = hj(x), or
Equations 5 and 6, if ci and cj predictions diverge for in-
stance x, i.e., hi(x) 6= hj(x).

~v(hi(x)) := ~v(hi(x)) + Sacc(ci, cj)− Serr(ci, cj) (4)

~v(hi(x)) := ~v(hi(x)) + acc(ci)− Sacc(ci, cj) (5)

~p
(0,0)
(0,1)

...
(k-1,k-1)

Corr. 0 Corr. 1 . . . Corr. (k-1)
12 4 . . . 0
3 16 . . . 1
... . . . . . . . . .
3 5 . . . 18

Figure 2: Example of the data stored for a given pair of
classifiers ci and cj for a classification problem with k classes.
Every entry in ~p has a one-to-one relation to a line in M .

~v(hj(x)) := ~v(hj(x)) + acc(cj)− Sacc(ci, cj) (6)

The overall ensemble prediction is obtained through Equa-
tion 7.

arg max
i

~v(i) (7)

Through Equations 4, 5 and 6, it is possible to observe
that given two classifiers with high Sacc, their split predic-
tions will be degraded, while their equal predictions will
obtain a high weight, which in turn is decreased by their
shared mistakes Serr. If pairs disagree on their predictions,
their individual decisions will be taken into account, but
their weights will be decreased according to their estimated
shared accuracy (Sacc).

In comparison to existing weighting methods, PA resem-
bles OAUE and SAE2 weighting mechanism as it formula-
tion is concerned about how changes in the data distribution
may impact classifiers’ weights. The main difference is that
PA combines classifiers pairwise, which may reduce the im-
pact of classifiers committed to previous concepts on the
overall decision.

3.2 Pairwise Patterns
Similarly to PA, Pairwise Patterns (PP) generates all pos-

sible pairs of classifiers
(
C
2

)
, but instead of estimating shared

accuracy, PP records predictions patterns, during training,
and use these patterns to weight decisions while predicting
the label of an unknown instance x.

PP maintains a vector ~p with all possible d = k2 pre-
diction patterns given two classifiers and k classes, and a
matrix Md,k which is updated during training and used to
determine which labels corresponds to each pattern. Md,k

has one column for each possible label and one line for each
pattern. During training, classifiers ci and cj predict the
label of an instance x independently, their predictions are
then combined into a pattern which is used to find the corre-
sponding line index in Md,k, while the correct label y deter-
mines the column index that must be incremented in Md,k.
The overall ensemble prediction for an unknown instance x
is the label that receives more votes based on the observed
patterns from all pairs of classifiers for instance x.

Figure 2 presents an example of how Md,k and ~p are re-
lated for a given pair. It is important to notice that the
whole ensemble just needs one vector ~p, but every pair of
classifiers must have a distinct matrix Md,k.

Using the example from Figure 2, while predicting the
label of an unknown instance x, if hi(x) = 1 and hj(x) = 0,
then pair pci,cj combined prediction is going to be 10 for
label 0 and 4 for label 1.

3.3 Ensemble adaptations for PA and PP
To make it possible to test PA and PP, we use an ensem-
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ble structure based on existing methods. We denote this
ensemble by Generic Ensemble (GE) and briefly describe it.

GE updates its component classifiers periodically based
on a predefined window, such that the worst or oldest clas-
sifier is replaced by a background learner (also known as
candidate [8, 13]) trained during the last window. The de-
fault method and the adaptation for PA replaces the worst
classifier, according to Equation 3, while the adaptation for
PP replaces the oldest classifier, since the latter does not
assess classifiers individually. During the first window GE
only has one active classifier and a background classifier. In
the second window the background classifier becomes active
and a new background classifier is created. This process
continues until the maximum number of classifiers has been
reached (user threshold), and after that new classifiers can
only replace existing classifiers. There are mainly two rea-
sons to perform this process. First, classifiers are trained
on different chunks of data and this assists in creating a di-
verse set. Second, the background classifier is adapted to
the latest concept, and therefore it can gradually “adapt”
the ensemble if drifts occurs. The background classifier do
not take part of voting during predictions, since it could po-
tentially degrade the overall performance as it may have a
“weaker” hypothesis. The default voting strategy of GE is
based on the combination of the individual classifiers weight,
such that weights are assigned according to Equation 3.

Besides using GE to test PP, we have also adapted the
leveraging bagging [5] algorithm to use PP for voting. The
changes made to leveraging bagging includes the addition of
a vector of patterns ~p to the ensemble, and for each pair of
classifiers a matrix M . In order to account for the fact that
leveraging bagging uses ADWIN to detect concept drifts,
whenever a drift is detected, and a classifier c is reset, all
matrices M corresponding to classifier c are reset as well. As
a consequence, values in different matrices M may vary in
scale. To adjust for that, each pair vote is weighted accord-
ing to the total amount of instances that both classifiers have
predicted together. We have not adapted leveraging bagging
to work with PA, since PA weight functions depends on a
fixed window size.

4. EXPERIMENTS
In our experimental framework we assess mainly the ac-

curacy of classifiers. To evaluate accuracy we apply the Pre-
quential [11] evaluation procedure with sample frequency =
1/10 of the data stream length. We use Prequential eval-
uation since it gives accuracy estimates that approximates
those of a holdout evaluation and allows using all instances
for testing and training. To account for random decisions
in SAE2, Leveraging Bagging, ADWIN Bagging, SFNC and
GE, the experiments were repeated third times varying the
algorithms random seeds. The overall accuracy measure was
obtained from the average of the third repetitions. Even
though, other aspects such as processing time and memory
are important for data stream evaluation, we do not present
these here due to the limited space, and because the over-
head caused by the voting strategies only marginally affects
memory and processing time. All experiments were con-
figured and executed on MOA (Massive Online Analysis)
framework [4].

We compare our modified ensemble classifiers with PA and
PP to their default methods (without pairwise voting), and
also to other ensemble classifiers. The reason to compare

ID
Data stream configuration

Data generator # drifts
Type of

drift
RTG RTG - -

AGR1 AGRAWAL 2 A/A
AGR2 AGRAWAL 2 G/G
SEA1 SEA 2 A/A
SEA2 SEA 2 G/G
HYPE Hyperplane - I

Table 1: Synthetic data streams configurations (A: Abrupt
Drift, G: Gradual Drift, I: Incremental Drift)

the modified ensembles against default implementations is
to check whether (and when) these pairwise voting strategies
are able to enhance the overall ensemble accuracy.

The other ensemble parameters were set according to their
original publications, except for the maximum number of
classifiers and the window (period), which were set to 10
and 1% of the data stream total length, respectively. For
example, the window size for a data stream with 1 million
instances was set to 10 thousand instances.

The experiments include four real datasets and six varia-
tions of synthetic data streams. The synthetic data includes
evolving (abrupt, gradual and incremental drifts) and sta-
tionary (no drifts) data streams. Table 1 presents which
types of drifts were simulated for every synthetic data stream
used. We refrain from providing a detailed explanation on
each dataset for brevity, thus we refer the reader to the orig-
inal publications, reviews or web resources on each dataset:
Spam Corpus (SPAM) [17], Forest Covertype (COVT)1, Air-
lines (AIRL)2, Electricity (ELEC) [14], SEA generator (SEA)
[24], Agrawal generator (AGR) [1], Random tree generator
(RTG) [10], Hyperplane generator (Hyper) [16].

Tables 2 and 3 presents the results for the adapted meth-
ods (LevBag-PP, GE-PA and GE-PP) with their default
methods (LevBag and GE). LevBag-PP was able to boost
LevBag accuracy most notably in 3 real datasets (SPAM,
AIRL and COVT). We observed that the best results for
LevBag-PP were achieved in situations where classifiers with
low individual accuracy for a given class, when combined
translated their prediction pattern into the most often cor-
rect label. For example, classifiers ci and cj predict label
1 for an unknown instance x, but it is more likely that the
correct label is 0 when both decide for 1.

Through analysis of Table 3 it is noticeable that GE-PA
was able to achieve higher or comparable accuracy in most
datasets, while GE-PP was more unstable. In order to un-
derstand in which situations PA voting surpassed that of
GE we analyzed in details experiments AGR1 and AGR2.
Figures 3 and 4 shows that GE-PA was able to adapt it-
self to the second concept drift (around instance 666,666)
faster than GE. GE-PA performance reported at 0.7 × 106

(see Figures 3 and 4) cannot be credited solely to background
classifiers replacing older classifiers, as this same mechanism
took place on GE during the same period.

By analyzing the period comprehended between instances
666, 000 and 700, 000 for AGR1, we observed a scenario, un-
usual during other periods, in which the amount of disagree-

1https://archive.ics.uci.edu/ml/datasets/Covertype
2http://kt.ijs.si/elena_ikonomovska/data.html
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Dataset LevBag-PP LevBag
AGR1 93.64 ± 0.15 93.69 ± 0.83
AGR2 90.95 ± 1.17 91.07 ± 1.29
AIRL 63.7 ± 0.28 62.67 ± 0.25
COVT 92.95 ± 0.26 92.19 ± 0.28
ELEC 90.67 ± 0.24 90.82 ± 0.21
RTS 97.99 ± 0.1 98.21 ± 0.09
SEA1 89.91 ± 0.04 89.64 ± 0.34
SEA2 90.46 ± 0.03 90.45 ± 0.04
SPAM 93.89 ± 0.55 93.11 ± 0.35
HYPE 90.75 ± 0.11 90.29 ± 0.12

Table 2: Average accuracy for LevBag and LevBag-PP. The
best accuracies per data stream are indicated in boldface.

Dataset GE-PA GE-PP GE
AGR1 94.2 ± 0.27 87.43 92.04 ± 0.08
AGR2 92.42 ± 0.41 82.7 90.87 ± 0.01
AIRL 66.38 ± 0.15 62.67 66.21 ± 0.02
COVT 87.72 ± 0.43 89.67 88.31 ± 0.16
ELEC 86.03 ± 0.17 84.76 85.97 ± 0.15
RTS 95.13 ± 0.08 96.57 95.19 ± 0.02
SEA1 89.32 ± 0.22 86.54 89.33 ± 0
SEA2 89.41 ± 0.07 86.51 89.43 ± 0
SPAM 87.19 ± 0.06 88.76 87.1 ± 0.02
HYPE 91.16 ± 0.06 86.42 91.15 ± 0.06

Table 3: Average accuracy for GE, GE-PA and GE-PP. The
best accuracies per data stream are indicated in boldface.
GE-PP standard deviation was below 10−9 for all experi-
ments.

ment between pairs was high, and it was for the better. In
this scenario, during prediction, classifiers with low individ-
ual weight (adapted to the previous concept) “transferred”
their condition to other classifiers that predicted the same
label as them, since their estimated shared accuracy (Sacc)
were low as well, while classifiers with high individual weight
(adapted to the current concept) were able to achieve sig-
nificant weight in split decisions when combined with these
low weight classifiers.

Table 4 presents the average accuracy for LevBag-PP and
GE-PA in comparison to other ensemble methods. To ver-
ify if there were statistically significant differences between
algorithms, we performed non-parametric tests using the
methodology from [9]. First, we used the Friedman test
with α = 0.05 and the null hypothesis “there were no statis-
tical difference between given algorithms” was rejected. We
proceeded with the Nemenyi post-hoc test to identify these
differences. The Nemenyi test indicates, with a confidence
level of 95%, that for the given experiments {LevBag-PP,
OAUE} � {DWM}.

5. CONCLUSION
In this work we have presented two voting strategies that

weights classifiers predictions based on their shared accuracy
(PA) or prediction patterns (PP). Intuitively, using pairs in-
stead of single classifiers weights adds more information to
what is already known from each component classifier to the
ensemble. It allows for insights such as“if classifier A decides
for 0 and B for 1, most likely A is wrong”. Through empiri-
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Figure 3: Accuracy on the AGR1 experiment (2 abrupt con-
cept drifts around instances 3.33×105 and 6.66×105)
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Figure 4: Accuracy on the AGR2 experiment (2 gradual
concept drifts around instances 3.33×105 and 6.66×105)

cal experiments we have shown that even though our current
pairwise strategies were not able to provide huge accuracy
improvements, they were able to achieve intermediate results
on most datasets and, when compared to the default voting
methods, for some datasets improvements were identified.
Also, we identify the most important contribution of this
work not as the specific pairwise voting methods, but as the
possibility that by combining classifiers into pairs one may
be able to model more sophisticated weighting mechanisms
that take into account agreements (and disagreements) be-
tween classifiers.

For future work, we plan to extend PP for more than
two classifiers, thus generating more complex patterns, and
to use other weighting functions for PA that take into ac-
count temporal dependences and unbalanced classes. Cur-
rently, we are investigating the impacts of ensemble size on
PA and PP, and the adaptation of the voting methods to
other ensemble methods. Another interesting analysis re-
gards the correlation between diversity metrics and “good”
interactions observed throughout the experiments.
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