
Annals of Telecommunications
https://doi.org/10.1007/s12243-020-00782-3

Regularized and incremental decision trees for data streams

Jean Paul Barddal1 · Fabrı́cio Enembreck1

Received: 1 October 2019 / Accepted: 18 June 2020
© Institut Mines-Télécom and Springer Nature Switzerland AG 2020

Abstract
Decision trees are a widely used family of methods for learning predictive models from both batch and streaming data.
Despite depicting positive results in a multitude of applications, incremental decision trees continuously grow in terms of
nodes as new data becomes available, i.e., they eventually split on all features available, and also multiple times using the
same feature, thus leading to unnecessary complexity and overfitting. With this behavior, incremental trees lose the ability
to generalize well, be human-understandable, and be computationally efficient. To tackle these issues, we proposed in a
previous study a regularization scheme for Hoeffding decision trees that (i) uses a penalty factor to control the gain obtained
by creating a new split node using a feature that has not been used thus far and (ii) uses information from previous splits
in the current branch to determine whether the gain observed indeed justifies a new split. In this paper, we extend this
analysis and apply the proposed regularization scheme to other types of incremental decision trees and report the results in
both synthetic and real-world scenarios. The main interest is to verify whether and how the proposed regularization scheme
affects the different types of incremental trees. Results show that in addition to the original Hoeffding Tree, the Adaptive
Random Forest also benefits from regularization, yet, McDiarmid Trees and Extremely Fast Decision Trees observe declines
in accuracy.

Keywords Data stream mining · Classification · Decision tree · Random forest · Regularization

1 Introduction

The growth rates of data acquisition, storage, and processing
have gathered the effort from both researchers and
practitioners towards the efficient analysis and knowledge
extraction from these humongous datasets. Such datasets
are every day more pervasive as the Internet of Things
(IoT) devices rapidly gather and produce data sequentially
over time, in the form of potentially unbounded data
streams. In addition to processing data streams, it is relevant
to learn from them. Therefore, a variety of algorithms
were proposed or converted from batch scenarios to learn
and update predictive models as new data arrives. For
instance, bayesian [1–4] and decision tree [5, 6] models are
popular approaches of data stream classification learners.

� Jean Paul Barddal
jean.barddal@ppgia.pucpr.br

Fabrı́cio Enembreck
fabricio@ppgia.pucpr.br

1 Graduate Program in Informatics (PPGIa), Pontifı́cia
Universidade Católica do Paraná, Curitiba, Brazil

For instance, Hoeffding [5] and McDiarmid Trees [6] are
often labeled as elegant, efficient, and robust approaches
that learn decision trees using constant time per instance
[5, 7]. Also, both have theoretical guarantees that the
convergence between the decision trees learned in streaming
and batch fashions depend on the sample size used during
the evaluation of features during the split.

Despite the aforementioned positive characteristics, the
original trees mentioned above (i) assume that the data
distribution is stationary and (ii) continuously grow in terms
of nodes as new data becomes available, regardless of (i),
which contradicts the statement that the processing time
per instance is constant, as trees are ever-growing. As we
discuss in Section 3, strategies for tackling (i) exist, but even
such methods either still fail to address (ii) or are ensemble-
based methods that were developed targeting accuracy rates
and not model readability [8] or are post-pruning techniques
that depend on a multitude of hyper-parameters that are
domain-dependent [9]. Additionally, as a result of (ii), both
Hoeffding and McDiarmid Trees tend to overfit to data,
meaning that these tend to memorize the stream and lose the
critical characteristic of being “white-boxes” in the sense
that they become too complex and are no longer human-
understandable, whilst also becoming too computationally

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-020-00782-3&domain=pdf
http://orcid.org/0000-0001-9928-854X
mailto: jean.barddal@ppgia.pucpr.br
mailto: fabricio@ppgia.pucpr.br


Ann. Telecommun.

costly, especially if this model is to be deployed in IoT
systems that are hardware limited.

Regularization is a process that discourages learning
algorithms from unnecessary complexity. It has many
flavors depending on the machine learning scheme being
adopted. For instance, a famous regularization scheme is
the LASSO [10], where the loss function of a linear learner
is penalized according to a parameter λ that determines
how much we wish to punish our model given increases
in its complexity. Conversely, regularization in decision
trees may take place using different approaches, such as (i)
limiting the maximum depth of the tree, (ii) bagging more
than a single tree, or even (iii) setting a stricter stopping
criterion (such as a minimum gain function value) to avoid
unnecessary splits. In [11], we proposed a regularization
scheme that is inspired by some of the aforementioned
strategies and is divided into two parts:

1. The use of a penalty factor ω to control the gain
obtained by creating a new split node on the decision
tree with a feature that has not been used thus far

2. The use of information from previous splits in the
current tree branch to determine whether the gain
observed in a leaf indeed justifies a new split

Combined, we showed in [11] that these two simple strate-
gies prevent Hoeffding Trees from growing indefinitely
while using a small subset of features that fit the concept
to be learned. These results showed that traditional incre-
mental decision trees may suffer from overfitting as they
use a higher amount of features that are actually required
to learn a robust predictive model and that regularization is
a step towards overfitting avoidance. Instead of providing
new theoretical insights on novel regularization schemes,
our goal is to determine how the regularization scheme
impacts the accuracy rates and tree growth of different types
of incremental decision trees, i.e., the Hoeffding Tree [5],
McDiarmid Tree [6], and the Extremely Fast Decision Tree
[12]; and an ensemble of randomized Hoeffing Trees, i.e.,
the Adaptive Random Forest (ARF) [13].

This paper is divided as follows. Section 2 details the data
stream mining problem with respect to data stream classifica-
tion and regression. Section 3 reviews decision tree classi-
fiers that will be later extended in Section 4 with the addition
of the proposed heuristics for regularization. The proposed
regularization scheme is then compared to the original algo-
rithms in Section 5 in both synthetic data streams and
real-world data. Finally, Section 6 concludes this paper.

2 Problem definition

In this paper, we target the inductive learning from data
streams. Here, S denotes a potentially unbounded data

stream providing instances it = (�x t , yt ) in the
(�x1, y1), . . . , (�xt , yt ), . . . , (�x ∞, y∞) form. Each instance
(�xt , yt ) drawn at a timestamp t is a realization from an input
space X and outcome space Y , such that the former is called
the feature set, and the latter the target. To denote the ith
feature from a feature set X, we will adopt the Xi notation.
Furthermore, if Y is discrete and finite, then the problem is
called a classification task, whereas if Y is continuous, the
problem is referred to as a regression task. In this paper, we
focus on the classification task, yet, a similar process used to
learn decision trees for regression problems can be observed
for streaming scenarios [14, 15].

Given S, the goal of induction is to learn and update a
model f : X → Y over time as new instances (�x t , yt )

become available. Updates on f can be either incremental,
if the underlying patterns obtained from incoming instances
adhere to the current concept, or decremental, for example,
when concept drift occurs [16]. Even though concept drifts
are of the utmost importance in data stream mining, in
this work, we target stationary streams, as the proposed
regularization scheme was tested in [11] with drift-adapting
trees. Our goal is to investigate the growing behavior
of trees when no changes exist, as they are expected to
branch on irrelevant features as new data becomes available.
Therefore, our goal is to explore the behavior of other
types of purely incremental trees other than the traditional
Hoeffding Tree [5] or state-of-the-art ensembles that use it
internally, as the Adaptive Random Forest [13].

3 Related work

Decision trees are a popular choice for learning prediction
models in batch settings as they are simple, robust, and
“white-boxes” as they can be easily understood. Decision
trees are learned recursively with the replacement of leaves
with split nodes, starting at the root. The definition of
which attribute will be used in a split node is chosen
by comparing all available features and choosing the best
according to a heuristic function J . In this work, we adopt
the information gain metric as a realization to J as it
is widely used in both batch and streaming settings and
achieves interesting results in a variety of scenarios. The
information gain provided by a random variable A with
respect to another variable B is given by Eq. 1 where
H(A) = − ∑

a∈A P [A = a] log2 P [A = a] is the entropy,
and H(A|B) = ∑

b∈B H(A|B = b) is the conditional
entropy of A given that the value of B is known.

IG(A; B) = H(A) − H(A|B) (1)

The splitting process is repeated on top of a set of training
examples that are stored in main memory, and as a result,



Ann. Telecommun.

classical decision trees are limited to learning from this
limited set of instances and are not tailored to evolve over
time.

By definition, the assumption that the entire dataset is
available for training does not hold in streaming scenarios,
and thus, authors in [5] have proposed a swift method to
learn decision trees from streaming data. Hoeffding Trees
relax this constraint by comparing which feature is the most
appropriate, according to J , on top of a small data sample.
To determine how big this sample should be, still in [5],
authors proposed the use of the Hoeffding bound. Assuming
a heuristic function J with range R, the Hoeffding bound
states that with probability (1 − δ), the true mean of J is
at least (J̄ − ε), where εHoeffding is the bound calculated
following Eq. 2.

εHoeffding =

√
√
√
√R2 ln

(
1
δ

)

2n
(2)

The rationale behind Hoeffding Trees is that, with high
probability, the data distribution observed in a sample with
size n adheres to the population distribution, which is
expected to be infinite in streaming scenarios. In practical
terms, a Hoeffding Tree will attempt a split after n instances
are observed at one of its leaves. Assuming that the goal is to
maximize1 J , and that Xa is the best-ranked feature in terms
of J and Xb the second best, then a split will be performed
on Xa if ΔJ = J (Xa, Y ) − J (Xb; Y ) ≥ ε. As a result of
empirical results, it has been noticed in [5] that reasonably
small values of n, e.g., n = 200, achieve interesting results,
and the same value has been adopted in frameworks of the
area, i.e., the Massive Online Analysis (MOA) framework
[1], which has also been used for the implementation of
the proposed method. Also, it is important to highlight that
Hoeffding Trees, by default, possess a pre-pruning step,
which analyzes a “null” attribute, which is the same as not
splitting the node. As a result, a split will be made iff with
confidence (1 − δ) the best split found is better w.r.t. J than
not splitting.

In [6], authors brought forward a discussion around the
assumptions behind the Hoeffding bound and its application
to decision tree learning in data streams. In practice, they
showed that Hoeffding’s inequality is suitable when the data

1In practice, depending on the metric J being used, we should,
instead, target its minimization. For instance, in CART-based trees
[17], our goal would be to minimize the Gini impurity metric instead
of maximizing it, and as a result, the process should be adapted.

analyzed is numerical (which is not always the case), as well
as heuristic functions J , e.g., information gain, and Gini
impurity, should be expressed as a sum of elements, which
is also not a valid assumption. Therefore, they proposed
the use of McDiarmid’s inequality to create new bounds
for tests on information gain and Gini impurity indices.
Focusing on information gain, authors showed that a proper
bound using McDiarmid’s inequality is given by Eq. 3,
where c is the number of classes in the classification
problem and n is the sample size. We refer the reader to [6]
for the mathematical proofs behind this theorem.

εMcDiarmid = [
6(c log2 e × n + log2 2n) + 2 log2 c

]

√
√
√
√ ln

(
1
δ

)

2n
(3)

More recently, authors in [12] proposed a strategy called
Extremely Fast Decision Tree (EFDT) further approximates
the error rates obtained by an incremental decision tree
and a traditional batch learned model. EFDT constantly
checks whether each of its split nodes outperforms
the aforementioned “null” attribute. If the null attribute
outperforms the current split, then the split is reverted,
causing the tree to shrink. Therefore, it allows the tree to
learn a new split node, this time with more confidence
as the data sample analyzed n is larger. Results reported
in the original paper showed that EFDT surpasses the
accuracy rates of the traditional Hoeffding Tree in stationary
scenarios, whilst no experiments on drifting data are
reported.

Another recent and relevant decision tree learning
algorithm is the Strict Very Fast Decision Tree (SVFDT)
[18]. This variant has constraints that should be respected
when growing the decision tree. First, a minimum value for
the heuristic function J should be observed before a split,
whilst also all leaf nodes should observe a similar number of
instances prior to splitting, and finally, the feature used for a
split should have higher relevance than in previous splits it
has been used. Despite its recentness and interesting results
reported, SVFDT implementation was not made available
by the original authors for comparative experiments.

One important shortcoming of the trees mentioned above
is that they work under the assumption that the underlying
distribution of the arriving data is stationary. Even though
this is not true for several scenarios, we refrain from
discussing adaptive trees [2, 19, 20] in this work as we have
applied the proposed regularization scheme in our previous
publication [11]. The only exception is the Adaptive
Random Forest (ARF) algorithm [13], which brings to
the online setting the core concepts behind the traditional



Ann. Telecommun.

Random Forests [21]. ARF creates a set of randomized
Hoeffding Trees in the sense that each tree is learned using a
different subset of instances which are drawn according to a
Poisson distribution, and each of its internal trees randomly
selects and assesses a different proportion of the features
available.

Finally, it is worthy to highlight that the analysis of the
tree structure and how it grows are lacking in each of the
aforementioned proposals. Exceptions include the works of
[11], in which the growth of Hoeffding Trees is evidentiated,
and the work of [22], in which memory consumption is
assessed, but no detail on the tree structure is given.

4 Regularization for incremental decision
tree learning

In this section, we present the proposed regularization
scheme for incremental and adaptive decision trees that has
been previously applied to Hoeffding Trees in [11]. This
regularization scheme was originally designed with two
goals: (i) to prevent incremental decision trees from splitting
on features that have already been used in the current branch
unless the gain observed is greater than the gains observed
earlier and (ii) to prevent these trees from using features
that have not been used thus far unless the gain obtained is
significant.

In batch learning settings, regularization in decision trees
may occur using different approaches, with the following
being the most common: (i) limiting the maximum depth
of the tree, (ii) bagging more than a single tree, or even
(iii) setting a stricter stopping criterion (such as a minimum
gain function value) to avoid unnecessary splits. Our
proposal is inspired by the aforementioned strategies and is
divided into two parts that tackle the aforementioned items.
The following subsections describe each of these parts
individually and how they are embedded within incremental
decision tree learning.

4.1 Avoiding the selection of unused features

The first part of the proposed regularization scheme is to
penalize the selection of a new feature during splits if the
gain J is similar to the one observed for other features in
previous splits. This scheme is similar to the one introduced
in [23], where authors explore regularization in random
forests and boosted tree models for batch feature selection.
During the split analysis in a leaf node l, we assume F

to be the list of features used in the previous split nodes
that go from l to the tree’s root. To avoid the selection of
a new feature a user-given penalty parameter 0 ≤ ω ≤ 1

that impacts J for Xj /∈ F is introduced and is applied in
Eq. 4.

J ∗(Xi, Y, F, ω) =
{

ω × J (Xi; Y ) if Xi /∈ F

J(Xi; Y ) otherwise
(4)

In practice, the regularization process selects a new
feature to split on unless the gain provided by it is
substantially larger than the maximum gain obtained with
a feature that has already been selected, as described by
Equation 5.

max
Xi /∈F

J ∗(Xi, Y, F, ω) ≥ max
Xj ∈F

J ∗(Xj , Y, F, ω) (5)

As observed in [23] and in our previous paper, different
values of ω present similar behavior when applied to
different applications, yet, briefly report their impact in
accuracy and tree depth in Section 5.2.

4.2 Analyzing previous splits during a leaf split

The second part of the proposed regularization process
analyzes whether the best-ranked feature chosen to split on
in a leaf node provides meaningful gains compared to the
gains observed in previous split nodes of the decision tree.
Here, we denote (F, M) to be a pair of lists, where F are
the features that the tree has split on that go from the tree’s
root until the current leaf l that reached its grace period n,
and M to be the respective J ∗ values of the splits we have
in F . Given the information contained in (F, M), a split
is avoided if the gain computed for a feature Xα is lower
then the maximum gain also computed for Xα in a previous
split. Even though this heuristic is an approximation, since
the data distribution observed at l may differ from the data
distribution in previous splits nodes, we work under the
assumption that the data distribution is stationary, and thus,
if the gain observed at a leaf node l is not superior to
the gain observed earlier, a new split should be considered
as an unnecessary complexity being added to the model.
More formally, assuming Xα to be the best-ranked feature
according to J ∗ in a leaf node l, a split will only occur if the
confidence bound condition is met (as previously explained
in Eqs 2 and 3) and if the condition given Equation 6 holds.

�(Xα, F, M) = max
(Xψ ,Mψ) ∈ (F,M)

{
Mψ if Xα = Xψ

0 otherwise
(6)

In practical terms, a feature will only be used in a split if
the gain provided by it is superior to the gains observed by
the same feature in previous splits in the current branch.



Ann. Telecommun.

4.3 Decision tree learning with regularization

Given the formulation of our proposed regularization
scheme, we devote this section to show how they are
embedded within the process of incrementally learning
decision trees. In Algorithm 1, we present an overview
of the Hoeffding Tree learning process combined with the
proposed regularization scheme. Even though this process
is limited to the traditional Hoeffding Trees, its adoption in
its variants reported in Section 3 is trivial as it only affects
the split node analysis, which is roughly the same for all
algorithms. The core of the learning process resides in the
loop given by lines 2–13, in which training instances arrive.
In line 3, each instance (�x t , yt ) is traversed from the root
until a leaf l is reached, and during this process, the feature
set F that contains the features used in the split nodes of that
specific branch are stored, and their respective gain values
(governed by J ∗) are also stored for posterior analysis.
Next, in line 4, the counters and statistics for computing
J ∗, e.g., class distribution and feature-class counters, are
updated at l. With the arrival of instances, the grace period
n will be reached, and if the class distribution at l is not pure
(test perform in line 5), i.e., biased towards a single class,
the tree will attempt to perform a split. Next, all features Xi

are evaluated according to J ∗ (4), and the two best-ranked
features, Xα , and Xβ , have their gain differences compared
against the Hoeffding bound.2 At this point, the leaf node l

will be replaced by a split node with a test on Xα if all of
the conditions below are met:

– The difference between the gains exceeds the Hoeffding
bound

– The gain on splitting on Xα is greater than the
maximum gain observed by the same feature in
previous split nodes (stored in (F, M))

– The gain on splitting on Xα is verified with the �

function earlier introduced in Eq 6.

5 Analysis

In this section, we compare different algorithms for learning
decision trees from streaming data both with and without the
proposed regularization scheme. In this analysis, we focus
on accuracy rates and tree depth, such that the latter serves
as a proxy for the computational cost of the tree. First, we
describe the experimental protocol, including datasets used,
validation procedure, and tree induction algorithms tested
along with their hyper-parameters. Next, we analyze the
impact of the ω parameter in the tree structure and accuracy

2For instance, the proposed scheme is the same for McDiarmid trees,
except that the McDiarmid bound earlier reported in Eq 3 instead of
the Hoeffding bound given in Eq 2.

rates in both synthetic and real-world scenarios and also
compare these results to those obtained by the original
decision tree algorithms.

5.1 Experimental protocol

In the following experiments, classifiers were validated
following a Prequential test-then-train protocol [24], where
each instance (�x t , yt ) drawn from the stream S is first
used for testing and then for training. Results are reported
in terms of average accuracy obtained along the stream,
average tree depth, and processing time (in seconds). The
algorithms tested include the original Hoeffding Tree (HT)
[5], the Extremely Fast Decision Tree (EFDT) [12], the
McDiarmid Decision Tree (MDT) [6], and the Adaptive
Random Forest (ARF) [13]. The hyper-parameters for all of
the aforementioned algorithms are reported in Table 1 and
match the default values provided in the Massive Online
Analysis (MOA) [1] framework.

These algorithms were tested in a testbed containing
both synthetic and real-world datasets that are described in



Ann. Telecommun.

Table 1 Decision tree learning
algorithms and the
hyper-parameters setup during
the experiments

Algorithm HT EFDT MDT ARF

Confidence bound εHoeffding εHoeffding εMcDiarmid εHoeffding

Confidence level (1 − δ) 99% 99% 99% 99%

Grace period (n) 200 200 200 50

Ensemble size – – – 100

Features evaluated for splits – – –
√

d

Reference [5] [12] [6] [13]

Table 2. For the sake of brevity, we refer the reader to the
original publications for details on how data are synthesized.
As for synthetic data, we use the AGRAWAL (AGR) [25],
Asset Negotiation [26], and the Random Tree Generator
[1] to generate data streams with 500,000 instances each.
Regarding real-world data, three widely used datasets,
namely Electricity (ELEC) [27], Forest Covertype [28], and
Spam Corpus (SPAM) [29], were used. These datasets are
much smaller than the synthetic experiments in terms of
instances, but exhibit temporal traits or a large amount
of features which make them worthy to be used during
experimentation. Overall, each of these experiments has a
different number of features and instances, and thus, will
allow a comprehensive overview of how regularization acts
on streams with different characteristics. Finally, all of
the code for reproducing the experiments reported in this
paper is publicly available at https://github.com/jpbarddal/
moa-reght.

5.2 Discussion

In this section, we follow the protocol established in [11]
where different values of ω are tested and its respective
impact in accuracy and tree depth is measured. To analyze
such impact, ω values varying within [0.05; 0.95] were
tested with a step of 0.05. In Figs. 1 and 2, we report
the results obtained by different decision tree learning
algorithms and ω values in synthetic and real-world data,
respectively.

The results obtained for synthetic data are displayed
in Fig. 1. Overall, we observe that there is a positive
trend in both accuracy and tree depth as the values of ω

increase. The results for tree depth are expected, as higher
values of ω imply smaller regularization rates, and thus,
the trees are allowed to grow more freely. The accuracy
results obtained by ARF depict that regardless of the ω

value assumed, obtained a consistent average accuracy rate.
In practice, such result is given by two factors: (i) ARF
uses decision trees internally that are built following the
Hoeffding bound [31] and that (ii) the ensemble dynamics
are efficient even if its internal trees are weaker as one
can observe with the smaller tree depths also observed
in Fig. 1. Furthermore, following what has been observed
in [11], the original Hoeffding Tree also obtains robust
accuracy rates across different ω values. On the other
hand, the results obtained by MDT and EFDT in terms
of accuracy rates are different from those observed in the
works of [11] and [23], as the different ω values greatly
impact the final accuracy rates observed. For instance, in the
AN experiment, we observe that MDT has low branching
factor even when no regularization is performed, and if the
proposed regularization scheme is used, it prevents the tree
from growing farther than the root node.

In Fig. 2, we report the results the real-world datasets.
The results observed for the COV experiment depict that
EFDT surpasses the accuracy rates of ARF while the trees
are, on average, deeper too. Furthermore, there is a positive
trend between the increase of ω and accuracy as well as for
average tree depth across all learners. A similar trend was
observed in the ELEC dataset, where higher values of ω

result in more accurate trees and no clear difference between
EFDT and ARF can be observed. On the other hand,
major accuracy improvements are observed for EFDT in the
SPAM experiment, while ARF remains reasonably stable

Table 2 Overview of the
datasets used in the
experiments

Experiment ID # of instances # of features # of classes Type Reference

AGR 500,000 9 2 Synthetic [25]

AN 500,000 9 2 Synthetic [30]

RTG 500,000 10 2 Synthetic [1]

ELEC 45,312 8 2 Real [27]

COVTYPE 581,012 54 7 Real [28]

SPAM 9,324 39,917 2 Real [29]

https://github.com/jpbarddal/moa-reght
https://github.com/jpbarddal/moa-reght


Ann. Telecommun.

Fig. 1 Average accuracy rates
(%) and average tree depth
obtained by different decision
tree learning models and across
different ω values in synthetic
experiments

once more. Regarding average tree depth, EFDT quickly
grows as ω increases, whereas ARF has a growth behavior
which is roughly static in the ELEC experiment and slowly
grows in SPAM. An important disclaimer regards the results
obtained by McDiarmid Trees (MDT) in both ELEC and

SPAM experiments, as the tree does not grow, i.e., it remains
as a single leaf node, during the entire experiment regardless
of the ω value adopted.

Given the results obtained above, it is important to
determine whether the proposed regularization scheme is



Ann. Telecommun.

Fig. 2 Average accuracy rates
(%) and average tree depth
obtained by different decision
tree learning models and across
different ω values in real-world
experiments

preventing the tree from overfitting, i.e., (i) it is keeping the
tree from growing, whilst (ii) allowing it to reach interesting
accuracy rates compared to their original version without
regularization. In opposition to what has been observed for
Hoeffding Trees in these experiments and those reported in

[11], different ω values significantly impact the accuracy
rates of EFDT and MDT learners, while ARF is roughly
not impacted. Following the results obtained and reported
in Figs. 1 and 2, we assumed ω = 0.7 as it yields
interesting tree pre-pruning while not jeopardizing accuracy



Ann. Telecommun.

Table 3 Average accuracy (%)
comparison for HT, ARF,
MDT, and EFDT

Experiment ID HT HT ARF ARF MDT MDT EFDT EFDT

(ω = 0.7) (ω = 0.7) (ω = 0.7) (ω = 0.7)

AGR 94.22 90.33 94.27 94.17 93.65 92.77 94.58 91.69

AN 94.15 94.15 94.08 94.06 92.25 90.64 94.14 94.12

RTG 99.45 99.30 98.50 94.16 95.48 93.83 99.57 92.37

COV 73.71 71.30 87.24 86.36 69.85 68.24 90.15 89.04

ELEC 77.62 76.61 87.18 86.96 73.90 73.90 82.52 80.38

SPAM 85.47 85.14 87.98 87.76 74.55 74.55 90.47 87.55

The best performing results per experiment are highlighted in bold

rates. Even though more strict values of ω could be used for
comparisons with ARF, we assumed the same value to make
our analysis concise.

In Table 3, we compare the average accuracy rates
obtained by HT, ARF, MDT, and EFDT with and without
the proposed regularization scheme assuming ω = 0.7. In
these results, we observe that ARF maintains solid accuracy
rates in all experiments, being RTG the scenario where the
accuracy dropped the most (around 4%). A similar behavior
is observed in HT, as the average accuracy drop is 1.29%
and no difference was observed in the AN experiment. For
MDT and EFDT, accuracy drops up to 7.2% were observed,
yet, such drops can be observed in nearly all scenarios,
thus showing that these trees are more susceptible to the
regularization scheme. Furthermore, as observed in Figs. 1
and 2, MDT was unable to learn robust decision tree models
and remained as a single leaf in both ELEC and SPAM
experiments. The accuracy rates reported in this table show
that the original MDT yields the same accuracy rates, thus
showing that MDT by itself is unable to learn any consistent
predictive model from the data. This is corroborated by the
results depicted in Table 4, where MDT has zero depth in
ELEC and SPAM experiments.

The average tree depth observed for HT, ARF, MDT, and
EFDT both with and without the regularization scheme is
reported in Table 4. These results show that using ω =
0.7 the tree depths shrink in approximately 21% for HT,
14% for ARF, 30% for MDT, and 18% for EFDT. It
is important, however, to emphasize that these decreases

are specially relevant for the Adaptive Random Forest, as
smaller trees are preferred as they consume less memory
space and compute faster, whilst also producing interesting
accuracy rates. These results show that the original ARF
is likely to overfit as its internal trees use all features—
even though they are irrelevant to the learning task—and
that the regularization scheme prevents this behavior. On the
other hand, it is also important to note that MDT and EFDT
underfit, as the tree depth shortening is linked with accuracy
drops. We highlight at this point that MDT relies on the
McDiarmid inequality (3) earlier discussed in Section 3,
which is based on both the sample size as well as to the
number of classes. The latter aspect is relevant, as this
information impacts the regularization process and is not
being accounted for.

The impact of the proposed regularization process in
terms of processing time is depicted in Table 5. The most
impressive gains observed in this table regarding the ARF
ensemble, as the CPU time (in seconds) decreased, on
average, by 41% and an improvement of 68% has been
observed in the AGR experiment. The processing time
decreases were also observed for HT, MDT, and EFDT,
and all observed an average improvement of 22% when
averaging the results obtained in different scenarios.

Finally, combining the analyses conducted for Tables 3,
4, and 5, we observe that the regularization scheme is
able to limit tree growth in HT, ARF, MDT, and EFDT,
thus impacting accuracy and processing time rates. For
instance, it is clear that the trade-off between preventing

Table 4 Tree depth comparison
for HT, ARF, MDT and EFDT Experiment ID HT HT ARF ARF MDT MDT EFDT EFDT

(ω = 0.7) (ω = 0.7) (ω = 0.7) (ω = 0.7)

AGR 03.36 02.66 10.10 07.59 03.36 02.17 07.98 06.06

AN 04.82 03.75 06.15 05.01 02.47 01.90 04.80 04.29

RTG 05.84 05.48 08.44 07.13 06.89 05.21 07.02 06.57

COV 11.48 07.06 05.12 04.75 02.56 02.00 15.00 12.00

ELEC 05.00 04.40 04.28 04.00 00.00 00.00 08.00 06.13

SPAM 04.00 03.00 05.4 04.84 00.00 00.00 08.00 06.58



Ann. Telecommun.

Table 5 Processing time (s) comparison for HT, ARF, MDT, and EFDT

Experiment ID HT HT ARF ARF MDT MDT EFDT EFDT

(ω = 0.7) (ω = 0.7) (ω = 0.7) (ω = 0.7)

AGR 2.32 1.70 3081.15 958.58 4.41 2.21 16.02 7.54

AN 5.26 3.81 1629.07 892.87 3.82 3.77 8.27 6.12

RTG 4.11 2.15 482.82 285.29 4.89 2.11 2.61 1.98

COV 15.89 13.80 739.10 612.76 18.59 12.70 28.37 22.87

ELEC 0.72 0.62 60.12 33.07 1.31 0.60 1.25 0.98

SPAM 272.12 252.56 502.07 350.09 283.12 262.96 393.63 289.09

The best performing results per experiment are highlighted in bold

trees from growing may result in underfitting, such as has
been observed for MDT in ELEC and SPAM, despite the
fact that MDT did not grow even without regularization. It
is relevant to highlight the positive results achieved when
regularization was applied to ARF, as in specific scenarios
the average tree depth was reasonably smaller and small
accuracy drops were observed, e.g., −24.79% on average
tree depth and −0.10% drop in accuracy in AGR and
18.49% on average tree depth and less than 0.02% drop in
accuracy in AN. These results, combined with an average
processing time decrease of 41% and smaller trees, depict
how regularization is suitable for decision tree ensemble
learning with ARF.

6 Conclusion

Incremental decision trees are a family of efficient and
accurate classification models for data streams. These
learning algorithms are fast and yield convincing predictive
rates, yet, are prone to branching indefinitely as new data
becomes available. In this paper, we applied a regularization
scheme to different types of decision trees to prevent
these from unnecessarily growing. The proposed scheme
has two parts. The first penalizes features that the tree
has not split on according to a user-given ω factor,
while the second utilizes information of previous splits
to determine whether a new tree split is necessary. Our
goal was to conduct experiments with different types of
decision tree classifiers in both synthetic and real-world
data, thus showing that the proposed regularization scheme
prevents decision trees from unnecessarily growing while
maintaining compelling prediction rates in the original
Hoeffding Tree (HT) and Adaptive Random Forest (ARF)
but the same did not hold for McDiarmid Trees (MDTs)
and Extremely Fast Decision Trees (EFDTs). Preventing
decision trees from unnecessarily growing is relevant for
a multitude of applications, especially in IoT scenarios, as
these algorithms are to be deployed in hardware-limited
devices. Therefore, having the knowledge of which type of
decision tree induction algorithm should be applied with and
without regularization is relevant as these are expected to

perform well in terms of accuracy whilst also having limited
memory consumption and fast responses as the processing
time is smaller.

As future works, we plan to further investigate the
application of regularized decision trees in the regression
task. For instance, the behavior of regularization should
be stressed in Fast and Incremental Model Trees with
Drift Detection (FIMT-DD) [14], Option Trees [15], and
Adaptive Random Forests for Regression (ARF-REG) [32].
Furthermore, we plan to focus on the impact of learning
regularized trees in ensembles, more specifically on how
the characteristic of learning “weaker” trees can be used
to leverage dynamic classifier and ensemble selection
techniques (DCS/DES) [33, 34] in streaming scenarios,
which are roughly overlooked in streaming scenarios
[35, 36].

Acknowledgments The authors would like to thank the anonymous
reviewers from both ACM SAC 2019 for the constructive comments
yielded on our original manuscript and the reviewers of the Annals of
Telecommunications for the feedback in this manuscript. This research
did not receive any kind of financial support.

References

1. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive
online analysis. J Mach Learn Res 11:1601–1604

2. Barddal JP, Gomes HM, Enembreck F, Pfahringer B, Albert
Bifet (2016) On dynamic feature weighting for feature drifting
data streams. In: ECML/PKDD’16, Lecture Notes in Computer
Science. Springer, New York

3. Bahri M., Maniu S., Bifet A. (2018) A sketch-based naive bayes
algorithms for evolving data streams. In: 2018 IEEE International
Conference on Big Data (Big Data), pp 604–613

4. Krawczyk B., Wozniak M. (2015) Weighted naı̈ve bayes
classifier with forgetting for drifting data streams. In: 2015
IEEE International conference on systems, man, and cybernetics,
pp 2147–2152

5. Domingos P, Hulten G (2000) Mining high-speed data streams. In:
Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’00, pages
71–80, New York, NY, USA. ACM. ISBN 1-58113-233-6.
https://doi.org/10.1145/347090.347107

https://doi.org/10.1145/347090.347107


Ann. Telecommun.

6. Rutkowski L, Pietruczuk L, Duda P, Jaworski M (2013) Decision
trees for mining data streams based on the mcdiarmid’s bound.
IEEE Trans Know Data Eng 25(6):1272–1279. ISSN 1041-4347.
https://doi.org/10.1109/TKDE.2012.66

7. Amezzane I, Fakhri Y, Aroussi ME, Bakhouya M (2019)
Comparative study of batch and stream learning for online
smartphone-based human activity recognition. In: Ahmed MB,
Boudhir AA, Younes A (eds) Innovations in Smart Cities
Applications Edition 2, pp 557–571, Cham. Springer International
Publishing. ISBN 978-3-030-11196-0

8. Bifet A, Frank E, Holmes G, Pfahringer B (2012)
Ensembles of restricted hoeffding trees. ACM Trans
Intell Syst Technol 3(2):30:1–30:20. ISSN 2157-6904.
https://doi.org/10.1145/2089094.2089106

9. Yang H., Fong S. (2011) Optimized very fast decision tree with
balanced classification accuracy and compact tree size, pp 57–64

10. Tibshirani R (1996) Regression shrinkage and selection via the
lasso. J Royal Statist Soc Series B (Methodological) 58(1):267–
288. ISSN 00359246. http://www.jstor.org/stable/2346178

11. Barddal JP, Enembreck F (2019) Learning regularized hoeffd-
ing trees from data streams. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC ’19,
pages 574–581, New York, NY, USA. ACM. ISBN 978-1-4503-
5933-7. https://doi.org/10.1145/3297280.3297334

12. Manapragada C, Webb GI, Salehi M (2018) Extremely fast deci-
sion tree. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery &#38; Data Mining, KDD
’18, pages 1953–1962, New York, NY, USA. ACM. ISBN 978-1-
4503-5552-0. https://doi.org/10.1145/3219819.3220005

13. Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger
B, Holmes G, Abdessalem T (2017) Adaptive random forests for
evolving data stream classification. Mach Learn 106(9):1469–
1495. ISSN 1573-0565. https://doi.org/10.1007/s10994-017-
5642-8

14. Ikonomovska E, Gama J, Džeroski S (2011a) Learning model
trees from evolving data streams. Data Mining Know Discov-
ery 23(1):128–168. ISSN 1573-756X. https://doi.org/10.1007/
s10618-010-0201-y

15. Ikonomovska E, Gama J, Zenko B, Dzeroski S (2011b) Speeding-
up hoeffding-based regression trees with options. In: ICML,
pp 537–544

16. Widmer G, Kubat M (1996) Learning in the presence of concept
drift and hidden contexts. Mach Learn 23(1):69–101. ISSN 0885-
6125. https://doi.org/10.1023/A:1018046501280

17. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Wadsworth and brooks,
Monterey CA

18. da Costa VGT, de Leon Ferreira de Carvalho ACP, Barbon Jr. S
(2018) Strict very fast decision tree: a memory conservative algo-
rithm for data stream mining. Patt Recog Lett 116:22–28. ISSN
0167-8655. https://doi.org/10.1016/j.patrec.2018.09.004. http://
www.sciencedirect.com/science/article/pii/S0167865518305580

19. Hulten G, Spencer L, Domingos P (2001) Mining time-changing
data streams. In: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’01, pages 97–106, New York, NY, USA. ACM.
ISBN 1-58113-391-X. https://doi.org/10.1145/502512.502529

20. Bifet A, Gavaldà R (2009) Adaptive learning from evolving data
streams. Springe, Berlin, pp 249–260. ISBN 978-3-642-03915-7.
https://doi.org/10.1007/978-3-642-03915-7 22

21. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. ISSN
0885-6125. https://doi.org/10.1023/A:1010933404324

22. Jankowski D, Jackowski K (2016) Learning decision trees from
data streams with concept drift, vol 80, pp 1682–1691. ISSN 1877-
0509 https://doi.org/10.1016/j.procs.2016.05.508, http://www.

sciencedirect.com/science/article/pii/S1877050916309954. Inter-
national Conference on Computational Science 2016, ICCS 2016,
6–8 June 2016, San Diego, California, USA

23. Deng H, Runger G (2012) Feature selection via regularized trees.
In: The 2012 International Joint Conference on Neural Networks
(IJCNN), pp 1–8, https://doi.org/10.1109/IJCNN.2012.6252640

24. Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with
drift detection. In: Bazzan AC, Labidi S (eds) Advances in Arti-
ficial Intelligence – SBIA 2004, volume 3171 of Lecture Notes
in Computer Science. Springer, Berlin, pp 286–295. ISBN 978-3-
540-23237-7. https://doi.org/10.1007/978-3-540-28645-5 29

25. Agrawal R, Imielinski T, Swami A (1993) Database mining: a
performance perspective. Know Data Eng IEEE Trans 5(6):914–
925. ISSN 1041-4347. https://doi.org/10.1109/69.250074

26. Enembreck F, Ávila BC, Scalabrin EE, Barthès JPA (2007) Learn-
ing drifting negotiations. Appl Artif Intell 21(9):861–881. http://
dblp.uni-trier.de/db/journals/aai/aai21.html#EnembreckASB07

27. Harries M (1999) New South Wales. Splice-2 comparative
evaluation: Electricity pricing

28. Blackard JA, Dean DJ (1999) Comparative accuracies
of artificial neural networks and discriminant analysis
in predicting forest cover types from cartographic vari-
ables. Comput Elect Agri 24(3):131–151. ISSN 0168-1699.
https://doi.org/10.1016/S0168-1699(99)00046-0. http://www.
sciencedirect.com/science/article/pii/S0168169999000460

29. Katakis I, Tsoumakas G, Vlahavas I (2006) Dynamic feature space
and incremental feature selection for the classification of textual
data streams. In: in ECML/PKDD-2006 International Workshop
on Knowledge Discovery from Data Streams 2006. Springer, New
York, p 107

30. Barddal JP, Gomes HM, Enembreck F (2015) A survey on feature
drift adaptation. In: Proceedings of the International Conference
on Tools with Artificial Intelligence. IEEE

31. Hoeffding W (1963) Probability inequalities for sums of bounded
random variables. J Am Stat Assoc 58(301):13–30. http://www.
jstor.org/stable/2282952?

32. Gomes HM, Barddal JP, Ferreira LEB, Bifet A (2018) Adaptive
random forests for data stream regression. In: 26th European
Symposium on Artificial Neural Networks, ESANN 2018,
Bruges, Belgium, April 25-27, 2018. http://www.elen.ucl.ac.be/
Proceedings/esann/esannpdf/es2018-183.pdf

33. Britto AS, Sabourin R, Oliveira LES (2014) Dynamic selection
of classifiers—a comprehensive review. Patt Recog 47(11):3665–
3680. ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2014.05.
003. http://www.sciencedirect.com/science/article/pii/S00313203
14001885

34. Cruz RMO, Sabourin R, Cavalcanti GDC (2014) Analyzing
dynamic ensemble selection techniques using dissimilarity anal-
ysis. In: Gayar NE, Schwenker F, Suen C (eds) Artificial Neural
Networks in Pattern Recognition, pp 59–70, Cham. Springer
International Publishing. ISBN 978-3-319-11656-3

35. Almeida PRLD, Oliveira LS, Britto ADS, Sabourin R (2016)
Handling concept drifts using dynamic selection of classifiers. In:
2016 IEEE 28th International Conference on Tools with Artificial
Intelligence (ICTAI), pp 989–995. https://doi.org/10.1109/ICTAI.
2016.0153

36. Zyblewski P, Ksieniewicz P, Woźniak M (2019) Classifier
selection for highly imbalanced data streams with minority driven
ensemble. In: Rutkowski L, Scherer R, Korytkowski M, Pedrycz
W, Tadeusiewicz R, Zurada JM (eds) Artificial Intelligence
and Soft Computing, pp 626–635, Cham. Springer International
Publishing. ISBN 978-3-030-20912-4

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TKDE.2012.66
https://doi.org/10.1145/2089094.2089106
http://www.jstor.org/stable/2346178
https://doi.org/10.1145/3297280.3297334
https://doi.org/10.1145/3219819.3220005
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10618-010-0201-y
https://doi.org/10.1007/s10618-010-0201-y
https://doi.org/10.1023/A:1018046501280
https://doi.org/10.1016/j.patrec.2018.09.004
http://www.sciencedirect.com/science/article/pii/S0167865518305580
http://www.sciencedirect.com/science/article/pii/S0167865518305580
https://doi.org/10.1145/502512.502529
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.procs.2016.05.508
http://www.sciencedirect.com/science/article/pii/S1877050916309954
http://www.sciencedirect.com/science/article/pii/S1877050916309954
https://doi.org/10.1109/IJCNN.2012.6252640
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1109/69.250074
http://dblp.uni-trier.de/db/journals/aai/aai21.html#EnembreckASB07
http://dblp.uni-trier.de/db/journals/aai/aai21.html#EnembreckASB07
https://doi.org/10.1016/S0168-1699(99)00046-0
http://www.sciencedirect.com/science/article/pii/S0168169999000460
http://www.sciencedirect.com/science/article/pii/S0168169999000460
http://www.jstor.org/stable/2282952?
http://www.jstor.org/stable/2282952?
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-183.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-183.pdf
https://doi.org/10.1016/j.patcog.2014.05.003
https://doi.org/10.1016/j.patcog.2014.05.003
http://www.sciencedirect.com/science/article/pii/S0031320314001885
http://www.sciencedirect.com/science/article/pii/S0031320314001885
https://doi.org/10.1109/ICTAI.2016.0153
https://doi.org/10.1109/ICTAI.2016.0153

	Regularized and incremental decision trees for data streams
	Abstract
	Introduction
	Problem definition
	Related work
	Regularization for incremental decision tree learning
	Avoiding the selection of unused features
	Analyzing previous splits during a leaf split
	Decision tree learning with regularization

	Analysis
	Experimental protocol
	Discussion

	Conclusion
	References


