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ABSTRACT
Learning from data streams is a hot topic in machine learning that
targets the learning and update of predictive models as data be-
comes available for both training and query. Due to their simplicity
and convincing results in a multitude of applications, Hoeffding
Trees are, by far, the most widely used family of methods for learn-
ing decision trees from streaming data. Despite the aforementioned
positive characteristics, Hoeffding Trees tend to continuously grow
in terms of nodes as new data becomes available, i.e., they eventu-
ally split on all features available, and multiple times on the same
feature; thus leading to unnecessary complexity. With this behav-
ior, Hoeffding Trees lose the ability to be human-understandable
and computationally efficient. To tackle these issues, we propose a
regularization scheme for Hoeffding Trees that (i) uses a penalty
factor to control the gain obtained by creating a new split node
using a feature that has not been used thus far; and (ii) uses in-
formation from previous splits in the current branch to determine
whether the gain observed indeed justifies a new split. The pro-
posed scheme is combined with both standard and adaptive variants
of Hoeffding Trees. Experiments using real-world, stationary and
drifting synthetic data show that the proposed method prevents
both original and adaptive Hoeffding Trees from unnecessarily
growing while maintaining impressive accuracy rates. As a by-
product of the regularization process, significant improvements in
processing time, model complexity, and memory consumption have
also been observed, thus showing the effectiveness of the proposed
regularization scheme.
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1 INTRODUCTION
The growth rates of data acquisition and storage have gathered the
effort from both researchers and practitioners towards the efficient
analysis and knowledge extraction from these humongous datasets.
One important trait of several computational systems nowadays is
that data becomes available sequentially over time, in the form of
a potentially unbounded data stream. Targeting learning classifi-
cation models from data streams, different approaches have been
created mimicking and adapting techniques from batch scenarios.
For instance, bayesian, logistic regression based on stochastic gra-
dient descent, and decision trees models are exemplars of families
of data stream classification learners. Due to their simplicity and
convincing results, decision trees and their ensembles are widely
used approaches for learning from data streams, and Hoeffding
Trees are the main exemplar of this family of methods [14]. Hoeffd-
ing Trees are an elegant, efficient and robust approach that learns
decision trees using constant time per instance and has theoretical
guarantees that the convergence between the decision trees learned
in streaming and batch fashions basically depend on the sample
size1 used during the evaluation of features during the split.

Despite the aforementioned positive characteristics, the original
Hoeffding Trees have two important drawbacks: (i) they assume
that the data distribution is stationary, and (ii) they continuously
grow in terms of nodes as new data becomes available, regardless of
(i). As we discuss in Section 3, strategies for tackling (i) do exist, but
even such methods either still fail to address (ii); or are ensemble-
basedmethods that were developed targeting accuracy rates and not
model readability [6] or are post-pruning techniques that depend
on a multitude of hyper-parameters that are domain dependent
[26]. Additionally, as a result of (ii), Hoeffding Trees tend to overfit
to data, and they lose the important characteristic of being “white-
boxes” in the sense that they become too complex and are no longer
human-understandable.

In this paper, we propose a regularization scheme for Hoeffding
Trees with the goal of preventing them from splitting - and con-
sequently growing - unnecessarily as new data becomes available.
Regularization is a process that discourages learning algorithms
from unnecessary complexity. It has many flavors depending on
the machine learning scheme being adopted. For instance, a famous
regularization scheme is the LASSO [23], where the loss function
of a linear learner is penalized according to a parameter λ that de-
termines how much we wish to punish our model given increases

1This parameter is later referred to as the grace period parameter.
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in its complexity. Conversely, regularization in decision trees may
take place using different approaches, such as: (i) limiting the max-
imum depth of the tree, (ii) bagging more than a single tree, or
even (iii) setting a stricter stopping criterion (such as a minimum
gain function value) to avoid unnecessary splits. Our regularization
approach is inspired in some of the aforementioned strategies and
is divided in two parts:

(1) The use of a penalty factor ω to control the gain obtained by
creating a new split node on the decision tree with a feature
that has not been used thus far; and

(2) The use of information from previous splits in the current
tree branch to determine whether the gain observed in a leaf
indeed justifies a new split.

Together, we show that these two simple strategies prevent Hoeffd-
ing Trees from growing indefinitely while using a small subset of
features that fits the concept to be learned.

This paper is divided as follows. Section 2 details data stream
classification and its main challenges. Section 3 reviews Hoeffd-
ing Tree-based classifiers that will be later extended in Section 4
with the addition of the proposed heuristics for regularization. The
proposed regularization scheme is then compared to the original
Hoeffding Trees in Section 5 in both synthetic data streams and
real-world data. Finally, Section 6 concludes this paper.

2 DATA STREAM CLASSIFICATION
In this paper, we target the data stream classification task. Formally,
we denote S to be a potentially unbounded data stream providing
instances it = (®x t ,yt ) in the (®x1,y1), . . . , (®xt ,yt ), . . . , (®x ∞,y∞)

form. Each instance (®xt ,yt ) drawn at a timestamp t is a realization
from an input space X and and outcome space Y , such that the
former is called the feature set, and the latter the class set. To
denote the i-th feature from a feature set X , we will adopt the Xi
notation.

Given S, the goal behind the classification task is to learn and
update a model f : X → Y over time. Updates on f can be either
incremental, if the underlying patterns obtained from incoming in-
stances adhere to the current concept; or decremental, for example,
when a concept drift occurs. Generally speaking, the underlying
concept C of a stream is a set of prior probabilities of the classes
and class-conditional probability density functions [21]:

C =
⋃
yi ∈Y

{(P[yi ], P[®x |yi ])} (1)

Given S, instances will be labeled according to the current con-
cept Ct . If between two timestamps ti and tj > ti it follows that
Cti , Ctj , then we have a concept drift [16]. Another important
categorization for concept drifts regards their length: ifCti , Cti+1

the drift is said to be abrupt, while ifCti , Cti+∆ with ∆ > 1 occurs,
the drift is called gradual. In this paper, we synthesize drifts using
the sigmoidal approach proposed in the Massive Online Analysis
(MOA) framework [9]. For different types of drift formulations, we
refer the reader to the works of [15] and [24].

3 HOEFFDING TREES
Decision trees are a popular choice for learning prediction models
in batch settings as they are simple, robust, and “white-boxes” in

the sense that they can be easily understood. Decision trees are
learned recursively with the replacement of leaves with split nodes,
starting at the root. The definition of which attribute will be used
in a split node is chosen by comparing all available features and
choosing the best according to a heuristic function J . In practice,
different realizations of J exist, such as the Gini Index, Conditional
Entropy, and Information Gain. In this work, we adopt the Informa-
tion Gain metric as it is widely used in both batch and streaming
settings and achieves interesting results in a variety of scenarios.
The information gain provided by a random variableAwith respect
to another variable B is given by:

IG(A;B) = H (A) − H (A|B)

where H (A) = −
∑
a∈A P[A = a] log2 P[A = a] is the entropy,

and H (A|B) =
∑
b ∈B H (A|B = b) is the conditional entropy of A

given that the value of B is known. The splitting process is repeated
on top of a set of training examples that are stored in main memory,
and as a result, classical decision trees are limited to learning from
this limited set of instances and are not tailored to evolve over time.

By definition, the assumption that the entire dataset is available
for training does not hold in streaming scenarios, and thus, authors
in [14] have proposed a swift method to learn decision trees from
streaming data. Hoeffding Trees relax this constraint by comparing
which feature is the most appropriate, according to J , on top of a
small data sample. To determine how big this sample should be, still
in [14], authors proposed the use of the Hoeffding bound. Assuming
an heuristic function J with range R, the Hoeffding bound states
that with probability (1 − δ ), the true mean of J is at least ( J̄ − ϵ),
where ϵ is the bound calculated following Equation 2.

ϵ =

√√
R2 ln

(
1
δ

)
2n

(2)

The rationale behind Hoeffding Trees is that, with high probabil-
ity, the data distribution observed in a sample with size n adheres
to the population distribution, which is expected to be infinite in
streaming scenarios. In practical terms, a Hoeffding Tree will at-
tempt an split after n instances are observed at one of its leaves.
Assuming that the goal is to maximize2 J , and that Xa is the best-
ranked feature in terms of J and Xb the second best, then a split
will be performed on Xa if ∆J = J (Xa ,Y ) − J (Xb ;Y ) ≥ ϵ . As a re-
sult of empirical results, it has been noticed in [14] that reasonably
small values of n, e.g., n = 200, achieve interesting results, and the
same value has been adopted in frameworks of the area, i.e. the
Massive Online Analysis (MOA) framework [9], which has also
been used for the implementation of the proposed method. Also, it
is important to highlight that Hoeffding Trees, by default, possess
a pre-pruning step, which analyzes a ‘null’ attribute, which is the
same as not splitting the node. As a result, a split will be made iff
with confidence (1 − δ ), the best split found is better w.r.t. J than
not splitting.

One important shortcoming of conventional Hoeffding Trees is
that they work under the assumption that the underlying distribu-
tion of the arriving data is stationary. As described in Section 2, this
2In practice, depending on the metric J being used, we should target its minimization
instead. For instance, in CART-based trees, our goal would be to minimize the Gini
Impurity metric instead of maximizing it, and as a result, the process should be adapted.
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assumption does not hold in a variety of scenarios, and thus, trees
should be able to update their branches according to changes in the
arriving data. One important milestone in adaptive tree learning
for data streams was Concept-adapting Very Fast Decision Trees
(CVFDT) [18], yet, it depends on three distinct user-given window
sizes to monitor, detect, and adapt to changes. Naturally, the tuning
of such parameters is an unwanted task in streaming scenarios as
the behavior of changes may also change over time.

With the same goal, Hoeffding Trees have been later extended
in [8], where each split node uses an ADWIN drift detector [7]
that monitors the error rate of that specific node. Whenever the
error rate of that node significantly changes, the split node and
its subtrees are replaced by a leaf, which starts the re-learning
process. Hoeffding Adaptive Trees have been investigated in many
domains, but we highlight feature drifting scenarios, which are
cases where the subset of features that is relevant to the learning
task changes over time [3, 25]. Whenever a feature drift occurs, the
error rate of those features that become irrelevant rapidly increase,
and these are consequently flagged by ADWIN, which result in
smooth adaptations to drifts. Finally, it is also worthy to mention
that Hoeffding Adaptive Trees have been extended in [4] where
their leaves have their predictions weighted by adaptive entropy
computations, also with the goal of overcoming feature drifts.

Another trend that deserves attention are tree-based ensembles
[2, 10], as they reach relevant accuracy rates in a variety of appli-
cations. Closer to our approach, it is worth to cite the Ensemble
of Restricted Hoeffding Trees [6], in which Hoeffding Trees are
limited to a specific height, yet, their readability are jeopardized as
the number of trees is reasonably high (in the scale of hundreds).
Also related to our approach is the work of [26], in which authors
target both accuracy improvements while performing post-pruning
in Hoeffding Trees, yet, their approach relies on a multitude of
user-given parameters that are domain dependent.

4 REGULARIZATION IN HOEFFDING TREES
In this section, we present our proposed regularization scheme for
Hoeffding Trees. Our proposal was designed with two goals: (i) to
prevent Hoeffding Trees from splitting on features that have already
been used in the current branch unless the gain observed is greater
than the gains observed earlier; and (ii) to prevent Hoeffding Trees
from using features that have not been used thus far unless the
gain obtained is significant.

In batch learning settings, regularization in decision trees may
occur using different approaches, being the following the most
common: (i) limiting the maximum depth of the tree, (ii) bagging
more than a single tree, or even (iii) setting a stricter stopping crite-
rion (such as a minimum gain function value) to avoid unnecessary
splits. Our proposal is inspired in the aforementioned strategies
and is divided in two parts that tackle the aforementioned items.
The following subsections describe each of these parts individually
and how they are embedded within the Hoeffding Tree learning.

4.1 Avoiding the selection of unused features
The first part of the proposed regularization scheme is to penalize
selecting a new feature for splitting when its gain J is similar to
the features used in previous splits. This scheme is similar to the

one introduced in [13], where authors explore regularization in
random forests and boosted trees models for batch feature selection.
During the split analysis in a leaf node l , we assume F to be the list
of features used in the previous split nodes that go from l to the
tree’s root. To avoid the selection of a new feature, we introduce an
user-given penalty parameter 0 ≤ ω ≤ 1 that impacts J for X j < F ,
as described by Equation 3:

J∗(Xi ,Y , F ,ω) =

{
ω × J (Xi ;Y ) if Xi < F
J (Xi ;Y ) otherwise

(3)

In practice, the regularization process will only select a new
feature to split on unless the gain provided by it is substantially
larger than the maximum gain obtained with a feature that has
already been selected, as described by Equation 4:

max
Xi<F

J∗(Xi ,Y , F ,ω) ≥ max
X j ∈F

J∗(X j ,Y , F ,ω) (4)

As observed in [13], it is expected that several values of ω to
present similar behavior when applied to different applications, yet,
we devote Section 5.1 to discuss the impact of different values of ω.

4.2 Analyzing previous splits during a leaf split
The second part of the proposed regularization process analyzes
whether the best-ranked feature chosen to split on in a leaf node
provides meaningful gains compared to the gains observed in pre-
vious split nodes of the decision tree. Here, we denote (F ,M) to be
a pair of lists, where F are the features that the tree has split on
that go from the tree’s root until the current leaf l that reached its
grace period n, and M to be the respective J∗ values of the splits
we have in F . Given the information contained in (F ,M), the ra-
tionale behind our regularization process is to avoid a split if the
gain computed for a feature Xα is lower then the maximum gain
also computed for Xα in a previous split. Even though this heuris-
tic is an approximation, since the data distribution observed at l
may differ from the data distribution in previous splits nodes, we
work under the assumption that the data distribution is stationary,
and thus, if the gain observed in a leaf node l is not superior to
the gain observed earlier, a new split should be considered as an
unnecessary complexity being added to the model. More formally,
assuming Xα to be the best-ranked feature according to J∗ in a leaf
node l , a split will only occur if the Hoeffding bound condition is
met (as previously explained in Equation 2 and later revisited in
Section 4.3) and if the condition given Equation 5 holds.

Ψ(Xα , F ,M) = max
(Xψ ,Mψ ) ∈ (F ,M )

{
Mψ if Xα = Xψ
0 otherwise

(5)

In practical terms, a feature will only be used in a split if the gain
provided by it is superior to the gains observed by the same feature
in previous splits in the current branch.

4.3 Hoeffing tree learning with regularization
Given the formulation of our proposed regularization scheme, we
devote this section to show how they are embedded within Ho-
effding Tree learning. In Algorithm 1 we present an overview of
the Hoeffding Tree learning process combined with the proposed
regularization scheme. This pseudocode details the process for both
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input :a data stream S , the grace period n, and the
regularization parameter ω.

output :be ready to provide the decision tree HT at any time.
1 Let HT be a tree with a single leaf node;
2 foreach it = (®x t ,yt ) ∈ S do
3 Sort it into a leaf l using HT , while (F ,M) is the set of

features and their respective heuristic values used in the
split nodes that go from the root to l ;

4 Increment l ’s counters for features and classes with it ;
5 if l ’s class distribution is not pure and the number of

instances observed at l is greater than n then
6 ∀Xi ∈ X , compute J∗(Xi ,Y , F ,ω);
7 Let Xα be the best-ranked feature in terms of J∗;
8 Let Xβ be the second best-ranked feature in terms of

J∗;
9 if J∗(Xα ) − J∗(Xβ ) ≥ ϵ and J∗(Xα ) > Ψ(Xα , F ,M)

then
10 Replace the leaf node l with a split node with a

test on Xα ;
11 end
12 end
13 end
Algorithm 1: Hoeffding Tree learning with the proposed reg-
ularization process. For details on the implementation of coun-
ters and statistics, the reader is referred to the original paper
on Hoeffding Trees [14] as the same process holds.

standard and adaptive Hoeffding Trees, as the general process is
the same with the exception of the drift detector application, for
which the reader is referred to [8]. The pseudocode reported here
follows the original code reported in [14], as counters, statistics
and other implementation details are maintained. The core of the
Hoeffding Tree learning process resides in the loop given by lines
2-13, in which training instances arrive. In line 3, each instance it
is traversed from the root until a leaf l is reached, and during this
process, the feature set F that contains the features used in the split
nodes of that specific branch are stored and their respective gain
values (governed by J∗) are also stored. Next, in line 4, the counters
and statistics for computing J∗, e.g., class distribution and feature-
class counters, are updated at l . With the arrival of instances the
grace period n will be reached and if the class distribution at l is
not pure (test perform in line 5), i.e., biased towards a single class,
the Hoeffding Tree will attempt an split. Next, all features Xi are
evaluated according to J∗ (Equation 3), and the two best-ranked
features, Xα and Xβ , have their gain differences compared against
the Hoeffding bound. If the difference between their gains exceeds
the Hoeffding bound, and the gain is greater than the maximum
gain observed by the same feature in previous split nodes (stored
in (F ,M)), and verified with the Ψ function earlier introduced in
Equation 5, then the leaf node l is replaced by a split node with a
test on Xα .

Table 1: Details of synthetic and real-world experiments con-
ducted.

Experiment Number of
Instances

Number of
Relevant Features

Total Number
of Features Type Reference

AGR 1,000,000 4 500 Synthetic [1]
BG1 1,000,000 3 500 Synthetic [17]
SEA 1,000,000 2 500 Synthetic [22]
COV 581,012 N/A 55 Real [11]
SPAM 9,324 N/A 39,917 Real [20]

5 ANALYSIS
In this section, we compare the original Hoeffding Tree [14] and its
adaptive variant [8] both with and without the proposed regulariza-
tion scheme. In our analysis, we report accuracy rates, processing
time (in seconds) and memory usage (measured in GB-Hour) com-
puted using a Prequential test-then-train validation scheme [16].
On top of that, we also report the number of nodes (both split and
leaf nodes) in the trees, thus highlighting how standard implemen-
tations of Hoeffding Trees grow indefinitely and why regularization
is beneficial. We divided this analysis in 4 subsections: (i) a discus-
sion on the impact of ω in terms of accuracy rates and number
of selected features in both real-world and synthetic data; (ii) a
comparison of Hoeffding Trees with and without the proposed reg-
ularization scheme in stationary synthetic streams; (iii) the same as
the latter item, but using drifting data; and finally, (iv) an analysis
on real-world data. In the following sections, we use HT to rep-
resent the original Hoeffding Tree, HAT the Hoeffding Adaptive
Tree, and the same names followed by the suffix -REG are the same
classifiers using the proposed regularization process.

An overview of the experiments conducted is given in Table 1.
We use the AGRAWAL (AGR) [1], BG1 [17]; and SEA [22] generators
and use the protocol proposed in [3] so that irrelevant features are
appended in each experiment. In practical terms, a feature is deemed
as irrelevant if the concept that is labelling instances does not use it,
and as a result, the correlation between each of these features and
the class tends to zero [3]. Also, for the sake of brevity, the concept
classification functions of each of these synthetic data generators
are omitted and the reader is referred to the original papers and
to the Massive Online Analysis (MOA) framework3 for details. In
total, each synthetic experiment reported in this section contain 1
million instances and 500 features, where only a handful of them
are relevant, as also depicted in Table 1. Regarding real-world data,
two widely used datasets, namely Forest Covertype (COV) [11] and
Spam Corpus (SPAM) [20], were used. Each of these experiments
has a different number of features and instances, and thus, will
allow a comprehensive overview of how regularization acts on
streams with different characteristics. Regarding the parameters of
Hoeffding Trees, all the parameters have been configured according
to the default values used in the MOA framework, i.e. the heuristic
function J is the Information Gain and the grace period size n = 200.
Also, the code used to reproduce the experiments listed in this paper
are available at https://github.com/jpbarddal/moa-reght and all the
results obtained were obtained in an 2.9GHz Intel i7-based iMac
with 16 GB of RAM. Finally, all of the results have been tested for

3The Massive Online Analysis (MOA) framework is available at https://moa.cms.
waikato.ac.nz and its source code is available at https://github.com/waikato/moa.

577

https://github.com/jpbarddal/moa-reght
https://moa.cms.waikato.ac.nz
https://moa.cms.waikato.ac.nz
https://github.com/waikato/moa


statistical confidence with the help of Friedman and Nemenyi tests
according to the protocol given in [12] using a 99% confidence level.

5.1 The impact of ω
In this section, we evaluate different values of ω and how they
impact Hoeffding Trees in terms of accuracy rates and number of
features selected. As reported in Equation 3, smaller values of ω
result in higher penalties for features that have not been used in
the current tree branch, yet, it is unclear how different values of ω
will impact overall accuracy rates in different concepts. To analyze
such impact, we test values of ω within [0.1; 0.9], using a step of
0.1. For the sake of brevity, we only report the results obtained for
the standard Hoeffding Tree as no differences have been observed
between it and its adaptive variant. The results obtained are shown
in Figures 1, 2 and 3, where we have the AGR, BG1 and SEA experi-
ments with no concept drifts. In these figures, we observe that the
accuracy rates do not change drastically according to changes in ω.
In practice, most of the accuracy curves are overlapping during the
entire stream. One exception is the AGR experiment, whereω = 0.8
and ω = 0.9 yield slightly higher results, but that in average, are
approximately 1% higher.

Conversely, the results obtained in terms of number of selected
features are consistent with the expectations, as the number of
selected features increases with smaller ω values. Naturally, accord-
ing to the Minimum Description Length [5] and Occam’s Razor
principles, we should minimize model complexity if it does not
jeopardize model efficiency. The combination of results obtained
here in terms of accuracy w.r.t. ω variations are consistent with
what has been observed in [13], and thus, we follow the same con-
servative approach used by authors, as ω = 0.5 will be used in the
following experiments. Yet, a disclaimer for the use of the proposed
regularization scheme may require an optimization of ω in future
applications. Also, as we will show in the following sections, even
if we follow a more conservative approach, i.e., slightly higher val-
ues of ω, the impact in computational resources, i.e., number of
number of nodes, memory consumption and processing time, will
be significant.

5.2 Synthetic Stationary Data
In this step of the analysis, we use the same synthetic data streams
used in the previous section, i.e., AGR, BG1 and SEA, again without
concept drifts. Here, we aim at stressing Hoeffding Trees and check
how the number of nodes and number of features selected in the tree
evolve during the progress of each stream and how the proposed

Figure 1: Results obtainedwith differentω values in theAGR
experiment using the HT-REG learner.

Figure 2: Results obtained with differentω values in the BG1
experiment using the HT-REG learner.

Figure 3: Results obtained with differentω values in the SEA
experiment using the HT-REG learner.

Table 2: Accuracy (%) results obtained in stationary synthetic
experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 94.95 93.86 94.29 93.88
BG1 89.93 89.99 89.89 89.99
SEA 89.05 88.48 89.13 88.71

regularization scheme impacts the results in terms of accuracy,
processing time, memory consumption, number of tree nodes, and
number of selected features.

First, we analyze whether the adoption of the proposed regular-
ization scheme puts the tree learning process in risk by checking
the overall accuracy rates of both Hoeffing Tree (HT) and Hoeffding
Adaptive Tree (HAT) learners. The results obtained are reported in
Table 2, where we observe that the accuracy rates of both learners
are similar regardless of the adoption of the proposed regularization
strategy as the biggest deviation observed was of 1.09% in the AGR
experiment between HT and HT-REG.

After observing that the proposed regularization scheme is able
to maintain consistent accuracy rates, it is important to verify
whether it is significantly improving the model complexity in terms
of processing time, memory consumption and tree structure. We
now focus on processing time rates, shown in Table 3, where the
gains obtained with the regularization scheme are high. For in-
stance, the smaller improvements observed are for HAT in the SEA
experiment, which became 6 times faster, while the biggest improve-
ments are for HT in the AGR stream, which became 18 times faster;
both corroborated by the combination of Friedman and Nemenyi’s
tests.

Following the trend observed for processing time rates, the gains
obtained for memory consumption can be observed in Table 4.
Again, the gains observed here vary from the HAT being 7 times
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Table 3: CPU Time (s) results obtained in stationary syn-
thetic experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 4548.62 244.48 4531.19 269.25
BG1 2189.56 214.53 2917.88 304.88
SEA 4292.11 479.76 6203.82 967.64

Table 4: RAM-Hours (GB-Hour) results obtained in station-
ary synthetic experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 7.13 × 10−2 4.06 × 10−5 7.12 × 10−2 4.57 × 10−5

BG1 1.66 × 10−2 9.01 × 10−5 2.98 × 10−2 2.30 × 10−4

SEA 6.88 × 10−2 3.13 × 10−4 1.33 × 10−2 1.84 × 10−3

Figure 4: Details about the Hoeffding Tree models in the
AGR experiment with no concept drift.

lighter in the SEA experiment to the HT being 1756 timesmore light-
weighted in the AGR experiment, therefore showing significant
improvements according to Friedman and Nemenyi’s tests.

The biggest reason behind the improvements in processing time
and memory consumption rates resides in the tree structure. In
Figures 4 through 6, we report the number of features selected and
the number of tree nodes in both HT and HAT learners with and
without the regularization scheme. The behavior observed across all
experiments are quite similar, as the number of features selected and
the number of tree nodes in both HT and HAT learners rapidly grow
with the arrival of training instances. In all cases, we highlight that
more than 200 features have been selected, while in practice, only
a handful of them are actually relevant to the concept to be learned
(see details in Table 1), thus showing that the Hoeffding Trees tend
to overfit to data. Similarly, the number of nodes also grows quickly,
reaching nearly 900 nodes after 1 million instances, thus rendering
the models learned not human-understandable. Taking into account
the results obtained with the regularization process, we can observe
that both the number of features selected and tree nodes are much
smaller than those observed in the original tree implementations
without regularization. In practice, the combination of the results
shown here show that the proposed regularization scheme benefits
Hoeffding Trees in stationary environments in terms of model
complexity, processing time, memory consumption, while at the
cost of limited accuracy rates.

5.3 Synthetic Drifting Data
In this section, we repeat the experiments conducted previously, but
with one important difference: all streams now contain one gradual

Figure 5: Details about theHoeffdingTreemodels in the BG1
experiment with no concept drift.

Figure 6: Details about theHoeffding Treemodels in the SEA
experiment with no concept drift.

Table 5: Accuracy (%) results obtained in drifting synthetic
experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 87.56 83.60 91.63 90.59
BG1 84.90 87.93 89.25 89.40
SEA 85.21 85.98 88.23 87.75

Table 6: CPU Time (s) results obtained in drifting synthetic
experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 3745.07 206.71 2331.09 570.30
BG1 1290.60 266.59 962.80 332.30
SEA 2826.98 421.92 2604.54 866.15

concept drift (∆ = 50, 000) located at themiddle of the stream. In Fig-
ures 7 through 9, we report the results obtained for all the synthetic
experiments, again focusing on the accuracy rates, number of tree
nodes, and number of features selected in each tree model. Similarly
as before, we start by conducting an analysis of the accuracy rates
obtained with and without the proposed regularization. The results
are shown in Table 5, where similar behavior is observed as the
proposed regularization scheme renders interesting accuracy rates
compared to the original tree models. The improvements obtained
for processing time and memory consumption, reported in Tables
6 and 7, again show important gains that show how beneficial the
regularization process is due to the simplified tree models that are
learned. Such simplification can again be observed in the results
depicted in Figured 7 through 9, where the simplification in terms
of features selected and tree nodes are again significant according
to Friedman and Nemenyi’s tests.
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Table 7: RAM-Hours (GB-Hour) results obtained in drifting
synthetic experiments.

Experiment HT HT-REG HAT HAT-REG
AGR 8.86 × 10−2 8.30 × 10−5 3.00 × 10−2 1.35 × 10−3

BG1 1.11 × 10−2 4.16 × 10−4 4.98 × 10−3 6.06 × 10−4

SEA 5.17 × 10−2 6.70 × 10−4 3.57 × 10−2 2.03 × 10−3

Figure 7: Results for the AGR experiment with one concept
drift.

Figure 8: Results for the BG1 experiment with one concept
drift.

Figure 9: Results for the SEA experiment with one concept
drift.

5.4 Real-world Data
In this final section, we evaluate the Hoeffding Tree models using
real-world data. Following the protocol adopted for synthetic exper-
iments, the results obtained in terms of accuracy, depicted in Table
8, by the tree models with and without regularization are similar,
while the results for processing time and memory consumption
rates are again interesting (see Tables 9 and 10). We note, however,
that the improvements obtained here are not as significant as those
observed for synthetic experiments since the real-world datasets are
relatively small in terms of instances. As observed in the previous
sections, the growth of the number of tree nodes is associated with
the number of instances that the tree is trained on, and thus, the
regularization process does not seem to affect the computational
resources rates too highly.

Table 8: Accuracy (%) results obtained in real-world datasets.

Experiment HT HT-REG HAT HAT-REG
COV 80.34 80.40 81.92 83.45
SPAM 80.35 80.12 85.21 84.77

Table 9: CPUTime (s) results obtained in real-world datasets.

Experiment HT HT-REG HAT HAT-REG
COV 29.10 15.85 21.92 20.44
SPAM 286.23 245.52 334.17 317.90

Table 10: RAM-Hours (GB-Hour) results obtained in real-
world datasets.

Experiment HT HT-REG HAT HAT-REG
COV 1.84 × 10−5 1.39 × 10−6 5.96 × 10−7 5.69 × 10−8

SPAM 3.30 × 10−3 2.96 × 10−3 5.43 × 10−3 3.75 × 10−3

Figure 10: Details about the Hoeffding Tree models in the
COV experiment.

Figure 11: Details about the Hoeffding Tree models in the
SPAM experiment.

However, it is still important to analyze the number of selected
features and tree nodes, which are shown in Figures 10 and 11.
Regarding the Forest Covertype (COV) experiment (Figure 10), we
observe that both the number of features selected and tree nodes
rapidly grow with the number of training instances, thus following
the behavior observed in previous experiments. A more discrete
behavior is observed for the SPAM experiment (Figure 11), where
the regularization process is still able to reduce the tree size and
number of features selected, but in a smaller scale.

6 CONCLUSION
Hoeffding Trees are a family of efficient and accurate classification
models for data streams. Despite Hoeffding Trees being fast and
producing interesting results in a variety of scenarios, they are still
prone to branching indefinitely as new data becomes available for
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training. In this paper, we conducted an analysis on the number of
nodes of Hoeffding Trees and on the number of features selected
on these splits in different scenarios. This analysis highlighted their
propensity to overfit as the number of splits on these trees rapidly
grow, and that many irrelevant features are selected as new data
becomes available. Next, we proposed a regularization scheme that
prevents Hoeffding Trees from unnecessarily growing. The first
penalizes features that the tree has not split on already according
to user-given ω factor, while the second utilizes information of
previous splits to determine whether a new split is necessary. Ex-
periments using both real-world and synthetic data showed that the
proposed method prevents both original and adaptive Hoeffding
Trees from unnecessarily growing while maintaining interesting
accuracy rates. As a by-product of the regularization process, im-
provements in processing time, model complexity, and memory
consumption have also been observed, while at the expense of
bounded accuracy decreases. As future works, we cite the follow-
ing: (i) the application of the proposed regularization scheme for
regression trees [19], and (ii) an analysis of the impact of the pro-
posed regularization scheme in ensembles of Hoeffding Trees in
terms of accuracy rates and computational resources.
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