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Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state,
i.e., events share the same process version. We conducted a systematic literature review on the intersection of
these areas, and thus, we review concept drift in process mining and bring forward a taxonomy of existing
techniques for drift detection and online process mining for evolving environments. Existing works depict
that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in
processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.
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1 INTRODUCTION: BACKGROUND ANDMOTIVATION
Process Mining (PM) is a growing research area that provides techniques to understand and improve
processes in different application domains [29]. PM’s goal is to extract non-trivial process-related
information from event data (observed behavior) recorded by the information systems available. The
PM area is drawing more attention because of the increasing availability of data events (more data
is being generated and recorded) and the need to develop and improve business processes in fast-
changing environments. In [71], van der Aalst defines three types of PM: discovery, conformance,
and enhancement. Discovery aims at producing a process model that generalizes the observed
behavior from the event data without any a priori information. The discovered process model
may describe only the control-flow of events or other aspects, e.g., organizational or time. In
conformance, the goal is to compare the event data with a process model (discovered or designed)
to reveal discrepancies. Enhancement focuses on improving or extending the current process model
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based on information obtained from event data. The key elements for any PM technique are the
event data and the process model.

The event data are usually recorded by information systems and can be accessed in event logs or
event streams. An event log contains a historical record of occurred events for a specific process,
providing information for the PM techniques in an offline manner. Event streams allow the PM
techniques to operate online, accessing the events as they occurred. When comparing event streams
to event logs, the main differences are that the event stream is potentially infinite, and the cases
inside it can be incomplete [76]. Regardless of the format, the event data contain information about
the execution of a single business process, e.g., buying items online. The process model in Figure 1
shows the sequence of activities executed in an online store using the Petri Net notation [71].

Fig. 1. Petri net model for the e-commerce process.

Each event refers to a single process instance (case), is linked to some activity of the process
(e.g., order request), and must be ordered within a case. Figure 2 shows an example of event data
recorded for the e-commerce process (Figure 1). Each case has an identifier and represents one
execution of the process, recording what is called a trace in the event data, i.e., the sequence of
events for the specific case. In the described cases, the trace < 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 > is recorded for cases
1 and 2; but case 3 generates a different trace < 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >. The event data in Figure 2 contains
the minimum information needed for PM techniques (case identifier, activity, and timestamp), but
other case or event attributes can be recorded and included in the process analysis. Because several
cases can record the same trace, a simple representation of the event log contains the traces and its
frequency, denoted as a superscript: 𝐿 = [< 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 >2, < 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >1, ...].

Fig. 2. Example of event data.

Most existing PM methods are designed to work with event logs and consider the processes
in a steady-state, i.e., all traces are related to the same version of the process. However, real-life
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processes are likely to change over time in response to market dynamics, new regulations, or even
improving or repairing the current process. This scenario imposes a new challenge: dealing with
these changes in the process analysis. A change inside a process can be planned or unexpected,
and the situation where the process is changing while being analyzed is named concept drift [10].

Concept drift is a relevant problem in different domains, e.g., business process analysis. Companies
are always trying to adapt and evolve their business process to handle different situations, e.g.,
changes in regulations and seasonal demands, so PM techniques should consider the concept drift
challenge to allow process analysis in evolving business. The PM manifesto [72] also highlights
dealing with concept drift in PM as one of the core challenges for the area. However, there is
no structured review of the topic describing the available published methods. This survey covers
different aspects of dealingwith concept drift in PM, providing an overview of the current techniques
and the challenges as a contribution to the area.

The paper is organized as follows. In Section 2, we introduce the concept drift in the PM context,
presenting its main challenges. Sections 3 and 4 overview current methods that can be applied
to evolving processes. Section 5 discusses the main achievements of the existing approaches and
highlights open challenges. Finally, Section 6 concludes the survey.

2 CONCEPT DRIFT IN PROCESS MINING
Concept drift is a well-known problem in data mining, and it refers to an online supervised learning
scenario when the relation between the input data and the target variable changes over time [23, 42].
In this situation, the learning algorithms need to adapt themselves on the fly to react to concept
drifts appropriately [28]. In PM, we also have a relationship between the input data, i.e., the event
data, and the target variable, i.e., the process model. Nevertheless, data mining techniques, including
techniques to deal with concept drift, handle structures as the target variable, as categorical or
continuous values in the form of a vector as input. PM techniques deal with process models,
which contain more complex structures, like concurrency, choices, and loops. Therefore, it is not
possible to use the same methods developed for data mining in PM, and thus, it motivates the
development of new strategies and techniques to handle concept drift in PM. To understand the
proposed approaches for dealing with concept drift in PM, we conducted a Systematic Literature
Review (SLR) to sustain the discoveries of this survey.

2.1 Research method
The SLR’s goal is to identify the current approaches for dealing with concept drift in PM. We only
included peer-reviewed documents and defined the following research questions (RQ):

• RQ1: Which approaches authors proposed to deal with concept drift detection in processes?
• RQ2: Which approaches provide tools for concept drift detection in processes?
• RQ3: How did the authors validate the proposed approaches?

The first author executed the search protocol by applying the search strings in the databases
of four digital libraries, as described in Table 1. We have also included the workshops from the
International Conference on PM Series (ICPM) because of their relevance to the PM area.
After obtaining the first set of papers from the digital libraries, the next step was to read and

classify them based on the inclusion (IC) and exclusion criteria (EC). The ICs define the relevant
studies, while the ECs guarantee the quality of the selected ones based on the pre-defined RQs [35]:

• IC1: Peer-reviewed documents written in English describing approaches for dealing with
concept drift in process models using only event data as input - 88 papers.

• IC2: Peer-reviewed documents written in English comparing approaches or tools for dealing
with concept drift in process models - 2 papers.
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Table 1. Searches in Digital Libraries and proceedings from ICPMWorkshops.

Origin Search String Results

ACM Digital
Library

[[All: “concept drift”] OR [All: “process drift”]] AND [All:
“process mining”]

20

IEEE Xplore ((“AllMetadata”:“concept drift” OR “process drift”) AND “All
Metadata”:“process mining”) AND [All: “process mining”]

13

Scopus ( TITLE-ABS-KEY ( “concept drift” OR “process drift” ) AND
TITLE-ABS-KEY ( “process mining” ) ) AND ( LIMIT-TO (
LANGUAGE , “English” ) ) AND [All: “process mining”]

56

Springer Link (“concept drift” OR “process drift”) AND “process mining” -
LIMITED TO ENGLISH

140

ICPM Workshops “concept drift” 2

Total 231

• EC1: Duplicated documents - 35 papers.
• EC2: Papers published before 2015 with less than five citations - 5 papers.
• EC3: Approaches dealing with concept drift in a business process that do not consider changes
in a complete perspective of the model, e.g., control-flow or time. For instance, a predictive
model for a specific time difference in the process, e.g., delivery time as the target adapted
when a concept drift occurred - 6 papers.

• EC4: Approaches for dealing with concept drift in processes but reporting experiments
without complete detailing, e.g., without describing the dataset configuration - 2 papers.

Finally, we applied backward snowballing [80] while following the ICs and ECs, including three
papers summing up a total of 45 papers. After reading the selected papers, we organized an overview
of the concept drift in PM, thus providing its main concepts. Sections 3 and 4 describe the identified
approaches for dealing with concept drifts.

2.2 Concept drift definition
Concept drift research in PM focused on two directions: (i) detecting drifts and providing information
for its analysis, and (ii) offering online PM techniques for dealing with evolving environments.
We have also identified two papers [20, 54] comparing approaches for concept drift detection in
process models, which are included in the first branch.
The concept drift in PM, also named business process drift in [45], is the situation when the

process changes while being analyzed [71]. Therefore, we cannot assume that the event log or
stream contains traces of a unique version of the process. Process models may include different
perspectives of the process: control-flow, data, timing, or others, and the changes can also occur in
any of these perspectives. Several notations exist to model business processes, and we will refer to
them as process models. The concept drift in process models includes different aspects reported in
the related works, summarized in Figure 3. The following topics illustrate and explain the aspects
depicted above.

2.3 Perspectives of change
A process model typically contains information about different perspectives; therefore, the changes
can occur in one or more of them. Authors in [9, 10] highlighted three essential perspectives in
business processes: control-flow, data, and resource (also named as organizational perspective by
[71]). Another vital view in PM is the time perspective, which provides performance indicators as
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Fig. 3. Different aspects of defining and characterizing concept drift in process mining.

lead, waiting, service, and synchronization times. Despite this perspective being widely explored
for process analysis, we found fewer papers exploring it for concept drifts [4, 12, 53, 62, 63, 69].

2.3.1 Control-flow. Changes in this perspective represent behavioral or structural changes in the
process model. Process models can be imperative, e.g., Petri nets or BPMN, or declarative, e.g.,
Declare models [73]. Authors in [77] suggest a set of 13 structural change patterns for imperative
business process models, organized into adding/deleting fragments, moving/replacing fragments,
adding/removing levels (sub-processes), adapting control dependencies, and changing transition
conditions. In a declarative process model, a structural change can be adding or deleting a constraint.
Figure 4 shows two structural changes in the e-commerce process: two activities for delivery
are included within a choice construction (regular or express), and the activity shipping address
validation can now be executed in parallel with credit card validation.

(a) Process model before the drift.

(b) Process model after the drift.

Fig. 4. Concept drift in the control-flow perspective.

The process behavior can also change without any structural modification on the model. In the
e-commerce process example, customers can be classified as silver or gold, depending on their
purchase history. Gold customers may start having express deliveries without extra charges. The
process structure remains intact, but the routing of cases changes as all orders from gold customers
are routed to the express delivery activity.
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2.3.2 Time. This perspective concerns the timing and frequency of events in the process. Events
recorded with timestamps make it possible to identify bottlenecks or measure service levels [71].
A change in this perspective deals with significant changes in process performance over time
[4, 12, 53, 69]. An example can be an activity that is manually executed, e.g., credit card validation,
and after a specific date is changed to be automatically performed by the system. The automatic
activity can reduce its time of execution, changing the time perspective of the process.

2.3.3 Resource. A change in the resource perspective regards the influence of the resources on
the execution of activities, including changes in the organization structure, roles, and resource
availability. An activity may not be active until a specific resource, e.g., a machine on a production
line, is available. A situation like this can change the execution paths of the process. In another
process, some activities can be redirected to be executed by a different department. In the e-
commerce process example, we can change the department responsible for the decision activity, for
instance, changing the resource perspective.

2.3.4 Data. This perspective concerns the data produced or consumed by the process during the
execution of its activities. A change in this perspective represents a change in the data related to the
case or the event. In the e-commerce process example, it may no longer be required to attach the
credit card image to execute the credit card validation activity. The proposals depicted in [32, 59, 68]
explicitly deal with this perspective.

2.4 Duration, type, and dynamic of the change
Changes can be classified as momentary or permanent, depending on the period the change is
active. Momentary changes are short-lived and affect only a few cases, whether permanent changes
are persistent and stay for a while [64]. In PM, a momentary change can be understood as an outlier
(or blip) that represents an unusual behavior. Typically, PM techniques filter out the outliers. Thus,
the approaches to deal with concept drift usually focus only on permanent drifts. Authors in [9, 10]
identified four distinct types of drifts: sudden, gradual, recurring, and incremental.

2.4.1 Type of Drift. Figure 5 shows: (a) a sudden drift, (b) a gradual drift, (c) a recurring drift,
and (d) an incremental drift. The x-axis represents the time component, while the y-axis indicates
distinct process models. A line inside the shaded rectangles represents a case.

Fig. 5. Four different types of drift. Adapted from [10].

Sudden drift. When a sudden drift occurs, a new version of the process model starts to handle
all the ongoing cases. It represents a complete substitution of the current process𝑀1 with a new
one 𝑀2, as shown in Figure 5 (a). This type of drift can occur in emergencies or even when new
regulations must be followed. In a sudden drift, incomplete cases should be redirected to the new
process, especially in real situations; this is also named intra-trace drift by [57]. In this situation,
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a case can contain events related to different versions of the process. Several approaches handle
sudden drifts, but the synthetic logs used for validation do not always contain intra-trace drifts.

Gradual drift. A gradual drift occurs when the current process 𝑀1 is replaced by a new one𝑀2,
but instances of both processes coexist for a while. For instance, if only the new customers of the
e-commerce process should provide a photo of the identification document. As indicated in Figure
5 (b), after some time, only instances of𝑀2 will exist. Figure 6 illustrates different gradual drifts
showing the probability of a process model emanating instances in the y-axis and time in the x-axis.
We can artificially model gradual drifts in different ways by using distinct functions to describe how
things grow or decay as time passes. Figure 6 (a-b) shows a gradual drift characterized by a linear
change between𝑀1 and𝑀2, i.e., the cases from both processes continuously decrease and increase.
The slope defines the degree of decrease/increase (Figure 6 a–b), and after 𝑡2, all cases emanate
only from 𝑀2. Another common approach is to follow an exponential rate of increase/decrease of
cases from two processes, such as depicted in Figure 6 (c–d). In this example, between 𝑡1 and 𝑡2,
which define the beginning and the end of the drift region,𝑀1 emanates cases with 𝑃 [𝑀1] = 𝑒−_𝑡

probability and𝑀2 follows 𝑃 [𝑀2] = (1 − 𝑃 [𝑀1]) [51].

Fig. 6. (a) and (b) shows variants of gradual linear drift, with slope defining the rate of change. (c) and (d)
shows variants of exponential gradual drift, characterized by the function 𝑒−_𝑡 for𝑀1. Adapted from [51].

Recurring drift. Recurring drifts represent situations where a process 𝑀1 is replaced by the
process 𝑀2, but after some time, 𝑀1 reappears, as in Figure 5 (c). If a model, or a set of models,
reappears after a while, we have a recurrent drift. It is also noteworthy to mention that models’
replacements in recurring drifts can be either sudden or gradual. Furthermore, a process that
changes based on seasonal influences is an example of a recurring drift.

Incremental drift. Incremental drifts represent the situation where a model𝑀1 is replaced to the
model 𝑀𝑛 by incremental minor changes, as illustrated in Figure 5 (d). As in the recurring drift,
each change inside an incremental drift can represent a sudden or gradual drift.

Summing up, the sudden and gradual drifts can be considered basic patterns of change. Recurring
and incremental can combine gradual, sudden, or even both types of drifts. In Figure 5, they are
shown as discrete sudden changes.

2.4.2 Dynamic of change. In [51] authors described multi-order dynamic, i.e., a situation where
process changes happen at different time granularity levels. For instance, let us assume a problem
where a company changes its process after a four week span. Nonetheless, during such a period,
the company has two variants of the process both before and after the drift. Approaches for dealing
with concept drift in PM must consider multi-order dynamics, which indicates a different time
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scale for the changes. In the example, we can identify micro-level changes every week and macro-
level changes after four weeks. This situation is complicated when the approaches use fixed-time
windows. Adaptive time windows can be more suitable for this scenario. However, in both cases,
the window size hyperparameter affects drift identification.

2.5 Type of analysis
PM techniques can be executed either online or offline. In an offline analysis, data are collected in
event logs, representing historical information from a time period and afterward analyzed. Most
PM techniques are designed for offline analysis, and concept drift is also explored in this scenario.
Possible applications for offline concept drift analysis are: (i) splitting the event log into smaller
parts for a better understanding of the process, thus avoiding more complex and imprecise models;
(ii) indicating unknown and probably unexpected changes in the processes, improving the process
analysis; and (iii) using the results of the analysis for redesigning the processes. In an offline setting,
the time for drift detection is not a vital issue, and thus, the approaches can consider data after the
drift on the analysis, and the event logs can be filtered to maintain only complete traces.

An online analysis (also known as operational support [71]) provides a way to influence and to
react to the ongoing cases by accessing the events as they occurred, usually as event streams, which
are an infinite sequence of events generated over time [76]. An online setting usually requires some
assumptions inherited from the data mining domain: data should have a fixed and small number
of attributes; algorithms should be able to process unlimited data without exceeding memory
restrictions; algorithms should consider a finite amount of available memory in a reasonable time;
there is a small upper bound on time allowed to process an event, e.g., usually algorithms work with
one pass of the data; and stream “concepts” may be stationary or evolving [16]. We need to address
the concept drift problem in online mode when the presence of changes or the occurrence of drifts
needs to be uncovered in real-time or in near real-time. The online analysis is appropriate if the
organization is interested in reacting to a change when it is happening, using real-time alarms. For
concept drift detection in PM, this means identifying the process changes as soon as possible but
with confidence that the change is significant. Therefore, we can highlight two main constraints
for online drift detection: accuracy and time. The online methods should handle both constraints
to find a good trade-off between them.

The approaches to online detect concept drift usually define a period where events are collected
to determine a reference model. After defining the reference model, the drift mechanism starts to
process new events. Concept drift detection approaches should not store all events from the stream,
so it is essential to define a forgetting mechanism. The methods can forget events by adopting a
windowing strategy (considering the recent events on the analysis) or applying additional methods,
e.g., the aging factor. Some authors proposed concept drift online detection using a stream of traces
[41, 45]. However, we only considered online strategies when event streams are the input, as a
stream of traces requires waiting for traces to be complete before its inclusion into the stream.

2.6 Dealing with concept drifts in processes
We identified two branches in the 45 identified papers: (i) concept drift detection; and (ii) online
PM dealing with evolving environments (Table 2). Sections 3 and 4 detail the approaches.

3 CONCEPT DRIFT DETECTION
The approaches for concept drift detection usually addressed one or more challenges described in
[9, 10]. We differentiate drift detection from change point (CP) detection because some approaches
only detect the drift without reporting the CP [18, 31, 36, 37]. We also separate “Change localization
and characterization”, defined in [9, 10], as such approaches usually focus on localization.
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Table 2. Classification of papers dealing with concept drift in PM.

Approach Papers Number of papers

Concept drift detection [1, 4, 9, 10, 12, 18, 20, 31–33, 36, 37, 40, 41, 44–
46, 49, 51, 53–57, 59, 61–63, 66–69, 82–86, 88]

38

Online PM dealing with evolv-
ing environments

[6, 13–15, 47, 60, 76] 7

(1) Drift detection. Detects that a process has changed without providing exact information
about the time period or the trace/event the change occurred.

(2) Change point detection. Detects that a process has changed and identifies the time period
or the exact point (event or trace) where the drift occurred. These approaches usually report
the case or event identifier as the CP, but we have also identified one approach [82–85],
named VDD, which reports the day as the CP.

(3) Change localization. Identifies the region(s) of change in the process model. The method
that deals with change localization should identify the exact point inside the model where
the drift occurs, e.g., between activities A and B, without needing a process model as input.

(4) Change characterization. Characterizes the nature of the change, defining the perspective
of change and the type of drift, e.g., sudden or gradual. As several approaches deal with a
specific perspective and type, e.g., sudden drifts in the control-flow perspective, this challenge
is unusually reported.

(5) Unravel process evolution or change process discovery. Reveals the complete change
process based on the identification, localization, and characterization of a change. Process
analysts need tools to explore and relate all the discoveries, resulting in discovering the
change process describing the drift dynamics.

Table 3 provides an overview of the drift detection approaches in PM. If the link of the public
dataset is not available anymore, we do not classify it as publicly available. When the authors
validate the approaches using synthetic datasets, we also reported if an objective metric is calculated.
We identified two metrics in the papers: F-score and detection delay. The F-score is the most common
metric and reports the geometric mean of the precision and recall, which rely on true positives
(TP), false positives (FP), and false negatives (FN). Yet, the definition of a (TP), (FP), and (FN ) is
unclear in 14 papers. In Table 3 only the papers with the F-score clearly defined are marked with
CD. For instance, if the method returns the trace index as the CP, a TP can consider a range of
indexes around the actual drift, and this should be specified. In [40, 51], the authors clearly define
the evaluation mechanism (Figure 7). The difference from other papers is that the authors apply a
lag period l surrounding a detected or an actual drift. In [88], the same idea is applied with the name
Error Tolerance (ET ). Techniques able to detect drifts with high precision and recall are preferred
over others. The detection, average or mean delay indicates the average number of traces/events
processed by the method between the actual drift and the moment the drift is alerted [45]. It points
out how early the approach is able to detect an actual change [66]. For the sake of homogeneity,
hereafter, we use the detection delay term.

Fig. 7. Definition of evaluation metrics. Adapted from [51].
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The authors in [44] report the percentage of correctly classified traces based on the known
process version. The approach is based on trace clustering, and the idea is to verify if the clustering
strategy correctly classifies the traces. It is not exactly a generic metric, but it works on trace
clustering approaches. In [69], the authors compare the total number of detected drifts with the
actual number of drifts. We do not consider this an accurate metric because it can evaluate detection
accuracy with a bias; however, we reported it in Table 3. The authors in [33] report an accuracy
value (from 0 to 1) without defining the metric, so we did not include it in Table 3.

We only considered online approaches those that use event streams as input. The authors in
[18] propose a method that can be applied online. However, the validation applied used a stream
of traces. Each trace is converted into several Parikh vectors (complete traces, one by one). The
Parikh vectors should be created based on an event stream for online use. The method proposed in
[41] is classified as offline because the event stream defined is, in fact, a stream of traces.

We grouped the papers by approach, and, in this case, we identified the characteristics addressed
in some of the papers using citation. The two papers comparing tools for drift detection are not
included and are described in Section 3.8. The papers are organized by the year of publication and
title (when there is more than one paper, the ordering considers the first one), in ascending order.
Table 3 highlights that synthetic datasets containing artificially injected drifts are scarce. We

only found three publicly available datasets that we further detail in Appendix A.
We organized the approaches to detect concept drift in processes based on the strategy for drift

detection: statistical hypothesis testing, trace clustering, visual analysis, CP detection, change
detection, trend detection, and other approaches. We classified the 36 papers in Table 4, and the
most common approach is statistical hypothesis testing.

The two papers [20, 54] that compare drift detection approaches are excluded from this classifi-
cation. It is important to highlight that some of the proposed methods combine other strategies
before or after applying the drift detection, e.g., clustering.
The following sections describe each approach in detail. Different aspects from the distinct

addressed challenge(s) addressed by each approach are also described. Section 3.8 describes the
two papers that compare drift detection approaches.

3.1 Statistical hypothesis testing
Several papers use statistical-based approaches to detect concept drifts in processes. In this section,
we group these approaches by the challenge addressed and the type of drift detected.

3.1.1 Detecting sudden drifts. The majority of the papers bring forward techniques that apply
statistical hypothesis testing to identify significant changes in the event data, process model, or
both over time, thus indicating a potential concept drift. These approaches assume that there
should be a statistically significant difference in traces, process models, or both; before and after
the CPs [9, 10]. The main idea is to apply a hypothesis test to confirm if there is statistical evidence
indicating the two samples are equal or not. Most of the approaches using statistical hypothesis
testing are tailored to deal with the first two challenges of process drift detection: drift detection
and CP detection.

Figure 8 shows an overview of the papers’ steps to explain the approach to detect and pinpoint a
process drift (challenges 1 and 2 from Section 3) based on statistical hypothesis testing. The grey
rectangles are the main steps for any standard statistical hypothesis testing that is based on event
data. The options for each step were described based on the papers identified in this survey.
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Table 4. Classification of papers dealing with concept drift detection in PM based on the detection approach.

Approach for Drift Detection Papers Number of papers

Statistical hypothesis testing [9, 10, 45, 46, 49, 51, 55–57, 59, 66] 11
Trace clustering [1, 4, 44, 53, 62, 69, 86] 7
CP detection [82–85] 4
Visual analysis [12, 32, 36, 37] 4
Change detection [18, 31, 33] 3
Trend detection [62, 63] 2
Other approaches [40, 41, 67, 68, 88] 5

Figure 8 overviews the possible combinations that a method can choose to identify process drifts.
The following topics describe each of the main steps explaining how the authors apply the proposed
approach. Finally, Table 5 details the choice for each step per paper.

Define what to compare. The statistical-based approaches for detecting drifts in processes need
to define what information the statistical test should compare. This information can be obtained
from event data, discovered process models, or a combination of both. Most of the approaches
[9, 10, 45, 46, 49, 51, 55–57, 59] use a representation of the event data (complete traces or sets of
events) to obtain relevant information about them, which is named features in some works. In this
paper, we use the term feature to represent any abstraction calculated from event data or process
model. Only one approach uses the actual process model as input for the statistical test. In [66], the
authors obtain graph metrics from discovered process models (discovered applying the Heuristics
Miner algorithm [79]): (i) number of nodes/edges; (ii) graph density; (iii) in and out-degree of each
node; and (iv) occurrence of node/edges. The method summarizes the computed metrics in two
vectors (reference and detection) with the size specified by the number of nodes in the graph. For
drift detection, the approach uses only the occurrence of edges. The other graph metrics are used
to determine the structure of the change.
In the approaches that use a representation of the event data, we identified several distinct

features that somehow capture some characteristics from the traces or the events. Authors in
[9, 10] define the concepts of local and global features. The former is calculated per trace, while the
latter is calculated over a log or part of it. Both papers describe the global features relation type
count (RC) and relation entropy (RE); and the local window count (WC) and J measure features.
One drawback of the proposed method is that the user has to manually pick the feature to be
used, implying that one has some a priori knowledge about the possible characteristics of the
drifts to be detected. Another issue is that the defined features generate a potentially large set
of high-dimensional vectors, affecting the scalability of the method for complex real-life logs or
even for real-time drift detection [45]. The approach defined in [51] used the J measure feature
former defined by [9, 10], so it shares the same drawbacks aforementioned. Authors in [49] define
one global feature named event class correlation (ecc), which indicates if two event classes are
linked. A higher ecc indicates that the two events commonly happen closely in the traces from
the event log. On the other hand, authors in [45, 46] proposed a run-based representation of the
traces and the notion of run-equivalence, derived from the field of concurrency theory [75]. The
set of runs and frequencies are calculated for a given sub-log, indicating this is a global feature. A
run can be understood as a representation of a set of traces considering concurrency. In [55–57],
authors inherit the 𝛼+ relations defined by the 𝛼+ algorithm [22] to generate a contingency matrix
containing the frequencies of each identified relation, obtained from sub-logs derived from a set
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Fig. 8. Steps of statistical hypothesis testing approaches to detect concept drift in processes.

of events. The 𝛼+ relations matrix can be considered a global feature because it is calculated over
a sub-log containing a set of events, which may contain uncompleted traces. The scalability of
this feature is validated using one real-life log containing 42 activities and 1,121 traces. Authors in
[59] calculates a score for all the cases (after an initial period of training) based on an Extended
Dynamic Bayesian Networks (EDBN ) proposed in the same study. The case score is the mean score
calculated overall events within the case and can be classified as a local feature.

, Vol. 1, No. 1, Article . Publication date: July 2020.



A Survey on Concept Drift in Process Mining 15

Organize the data. The approaches that use the traces or discovered process models to identify
the drifts must organize the input data to generate the samples for applying the statistical test. In
the case of comparing complete traces, the methods consider the traces as a time series based on
the timestamp of the first event. Next, the features obtained from the traces represent a dataset
ordered by the trace arrival time [9, 10, 49, 51, 59]. The method applied in [45, 46] also organizes the
traces as time series by their arrival time. Next, it converts the traces into runs, i.e., a representation
that groups together traces with concurrent activities. As the run represents the trace, we consider
it a feature obtained from the traces. The process models from [66] are also discovered based on
the traces as time series. In contrast, the approach for drift detection applied in [55–57] uses an
event stream, where the events are emitted according to their timestamp without the need for any
particular organization. The features are calculated on a set of events ordered by their arrival time.
Organizing the event log as a time series may give rise to a tricky situation when dealing with

drifts. A case may start with a version of the process, and during its execution, another version can
take place (intra-trace drifts). If the traces have a long duration, they can be placed next to each
other based on their arrival time, but they can be related to different versions of the process. This
situation can confuse the method when identifying the exact point in time where a change begins.

Define how to generate the samples. Next, the methods should define how to generate the event
samples using a windowing strategy over the dataset of features. The windows can be fixed or
adaptive, overlapping or non-overlapping, continuous or non-continuous. The statistical hypothesis
test is then applied in two adjacent windows to detect if and when the features significantly change
(using a two-sample test), which is the drift detection itself. Usually, the two windows used by the
test are named reference and detection windows. The definition of the window size, when set by
the user, directly affects the accuracy of the results. The choice of the window size is critical in
any drift detection approach because a small window size may lead to false positives, and a large
one may lead to false negatives, thus rendering the identification of the drift location challenging
[45]. This can be explained by the stability-plasticity dilemma, where the main idea is that learning
a concept requires plasticity for the integration of new knowledge, but also stability in order to
prevent the forgetting of previous knowledge [52]. Even the adaptive window approach proposed
in [51] requires the user to establish a minimum and maximum window size, resulting in false
positives or negatives, depending on the values selected. The adaptive window proposed in [45, 46]
dynamically changes the window size based on the variation observed in the event log, inspired by
the ADWIN method proposed in [7]. The method needs an initial window size (defined by the user),
and despite the authors describe that this parameter can be empirically set, this is not well explored
in the paper. When the authors compared the fixed-size window versus the adaptive-size window,
they set the initial value for the adaptive approach with the same value of the fixed-window size.
Still, there is an open question on how one should define this initial value. In [57], the authors
use the same adaptive window approach without specifying the initial window size. In Table 5 we
detail the windowing approach for each paper, describing if the window size is a parameter or not.
Unfortunately, the authors in [59] do not explicitly describe how the samples are generated.

Choose the statistical test. The statistical hypothesis testing method’s choice depends on the
feature (scalar or vector) and the data distribution. Since the event data distribution is not a priori
known, the authors usually choose non-parametric tests. The only exception is the Hotelling 𝑇 2

test used in [9, 10]. The statistical test provides the p-value, which is the evidence against the null
hypothesis. The null hypothesis indicates that the two samples are equal; i.e., there is no drift
between them: the smaller the p-value, the more substantial the evidence that the null hypothesis
should be rejected. The rejection of the null hypothesis indicates a drift. Because the p-value may
be under the threshold (indicating a drift) in case of noise, some approaches include a filter to
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discard abrupt stochastic oscillations in the p-value. Authors in [45, 46, 57] named this filter as the
“oscillation filter”, which allows the method to detect a drift only if a given number of successive
statistical tests have a p-value less the typical threshold. The main idea is that a persistent p-value
under the threshold is much more reliable than a sporadic value happening abruptly.

Show the results. The most common way to report the results is to plot the p-value calculated by
the statistical method (often named Drift Plot), with the trace/event index in the x-axis. The Drift
Plot may also highlight the CP in the x-axis. The paper [66] only reports the CPs, and the paper
[59] plots the case scores instead of the p-value, highlighting the drift points.

Table 5 reports the details for each of the steps defined in Figure 8 for the papers using a statistical
hypothesis testing approach to detect concept drift in processes.
Both approaches [55, 56] applied the same drift detection mechanism proposed in [57]. The

papers are organized by their year of publication and title, using ascending order.

3.1.2 Detecting gradual drifts. Detect gradual drifts aremore challenging than sudden drifts because
there is no specific point when the cases start emanating from a different version of the process.
We identified three statistical-based approaches addressing gradual drifts [10, 46, 51]. The method
implemented in the Concept Drift plugin [10] tailored for ProM [74] was validated using synthetic
logs containing linear gradual changes. The experiments have shown the potential to identify the
gradual drifts in the Drift Plot. This approach was extended in [51], using a noncontinuous sliding
window to generate the samples for the statistical hypothesis testing. Therefore, there is a gap
between each pair of subsequent windows, allowing for the statistical test to easily identify the drift.
The main idea is that the gap will cover when both versions of the process co-exist. The maximum
size of the gap has to be manually initialized by the user. This approach assumes the gap period
between the samples will cover the time period where both versions of the process coexist. If this
assumption is true, a statistical hypothesis test on these two samples should yield a significantly
lower p-value, thus facilitating the detection of a change. Yet, defining a proper value for the gap
parameter is not easy because, depending on how this parameter is set, some drifts may be missed.
Another drawback of this approach is that the detection of sudden and gradual drifts is not

integrated, i.e., the user has to choose the type of drift to be detected. When applying the gradual
drift detection in event logs containing only sudden drifts, the detected drifts are reported as gradual
ones [46]. Thus, it is not possible to use this method to identify the type of the detected drift.

Another approach that deals with gradual drifts is [46], implemented in the Apromore Tool [38].
Apromore integrates the detection of sudden and gradual drifts without the need for the user to
specify a priori the kind of drift he wants to detect. The method relies on the idea that a gradual drift
(between𝑀1 and𝑀2) is an interval between two sudden drifts. The first drift indicates the point in
time𝑀2 starts to emanate instances, and the second drift is when there are no more instances from
𝑀1. The approach implements a post-processing stage after the detection of the sudden drifts to
identify the gradual drifts. For each consecutive pair of sudden drifts detected, the approach applies
another statistical test to check whether the distribution of runs inside the interval is a mixture of
runs before the first drift and after the second drift. The authors assume that the distribution in
the interval is a linear combination of the distributions before and after the interval and apply the
Chi-square goodness-of-fit statistical test to confirm it. This test checks if a set of observations is
consistent with a hypothesized distribution. The method uses the histogram of runs as a proxy
for the statistical test instead of the full statistical distribution of runs over a given time interval,
which is unknown. The validation uses 18 artificial logs that include the gradual drift using a linear
probability function with a slope of 0.2 percent.
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The performance is determined by the F-score and detection delay. A TP is computed if its detected
interval includes the central point of the interval of the actual gradual drift. One drawback of this
validation scheme is that the distribution of traces during the period when both process models
coexisting can be other than linear, which is not validated. However, the method is also applied in a
real-life log, the same log used by [51]. The results of the real-life log are validated by the business
analyst, confirming the detected drift. In [46], the authors reported that the business analyst did
not recognize the gradual drift reported in [51], meaning that the detected drift is a FP.

3.1.3 Change localization. The methods for dealing with concept drift proposed in [9, 10] provide
an approach for localizing the drifts. The user can interact with the ProM software [74], using the
Concept Drift plugin, and select two activities to identify whether there is a drift between them.
Authors in [56] proposed a fully automated method for characterizing drifts in a process. In

the pre-processing step, the approach obtains two sets of data points containing the 𝛼+ relations
(defined by 𝛼+ algorithm [22]) from two windows, one before and another after the drift using the
drift detection approach from [57]. The size of the data points’ set is based on the characterization
delay (𝑛), which is automatically defined to 500, based on performed and reported experiments.
In the first stage, the approach performs a statistical test to measure the association between the
detected drift and the distribution of the 𝛼+ relations before and after it. K-sample permutation
test (KSPT ), as suggested in [27], measures the association between each 𝛼+ relation (attributes)
and the label indicating pre or post-drift (target), to discard irrelevant relations. Next, the method
ranks the remaining 𝛼+ relations by using the relative frequency change (RFC), calculated for
each relation. There is also a filter based on the percentage of total relative frequency change
(TRFC), which considers only a part of the ordered relations, defined as 95% based on the reported
experiments. The second stage of the method matches the considered relations with their RFC with
a set of pre-defined change templates and reports the best matches to the user in natural language.
The approach was validated using 25 synthetic logs and using a real-life log (BPIC 2011). One
limitation is that the method does not characterize simultaneous changes if they have overlapping
activities. The characterization delay (n) also limits the inter-drifts distance that the method can
detect. The authors preferred to provide a fully automated method, not allowing the user to change
the parameters, which can also be considered a limitation. Another drawback is that the set of
pre-defined templates describes changes in a low level of abstraction, e.g., adding an activity, which
results in reporting a lot of low-level changes. The main consequence of the identified limitations
is that the drift characterization method hardly works in a real-world environment [68].
In [55], the authors propose a new method for characterizing the drifts, also based on the drift

detection mechanism presented in [57], to overcome the limitations to handle overlapping and
nested changes. First, the approach discovers two process trees from an event stream (pre and
post-drift) applying the Inductive Miner – partial traces (IMpt) proposed by the authors. Next, it
discovers the sequence of edit operations with minimal cost to convert the pre-drift tree (𝑃 ) into
the post-drift tree (𝑃 ′) by applying a process tree transformation technique. This technique first
determines the valid mappings to convert 𝑃 into 𝑃 ′, then applies the A* algorithm (described by
the authors for the specific application) to find the valid mapping with minimal cost. The authors
also implement an option to apply a greedy algorithm to choose the valid mapping, which is faster
but provides a non-optimal approach. The implementation is available in the Apromore ProDrift
plugin [55], and it was extensively validated using 365 artificial logs and two real-life logs.

3.2 Trace clustering
Approaches to detect concept drift in processes based on trace clustering analyze different cluster
compositions over time. The main idea is to consider the time information obtained from traces (or
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events) in the clustering stage to follow the different compositions of clusters over time. New or
missing clusters indicate a change in behavior, i.e., concept drift. Usually, some traces (or events)
are processed as a training step (also named “grace period” or “burnout window”) to determine the
default behavior before monitoring different clusters compositions. Sometimes this training step is
not explicitly defined; in [61], for instance, the authors recommend, as a rule of thumb, neglecting
insights from the first 𝑘 cases, where 𝑘 indicates the size of the hash table used to store the events.
Authors in [4, 53, 69] proposed the Concept-Drift in Event Stream Framework (CDESF), which

monitors the cluster composition over time using time windows to define checkpoints (CPs). When a
CP has reached, the information about activities and time intervals from the traces are updated. The
method applies a forgetting mechanism to define the traces that should be considered in the update.
If the cluster composition changes at the checkpoint, the method triggers a drift. For instance, if the
method clusters a case previously identified as anomalous within instances of standard behavior.
CDSEF combines frequency of activities and time intervals from traces as features for the clustering
strategy, detecting drift in the control-flow and time perspectives combined. Authors in [1] proposed
a new clustering strategy applied to the activity distance feature to detect drifts. The strategy checks
each trace over time, thus identifying a potential drift when a new cluster is created (cluster cut).
The activity distance is calculated between a pair of activities, so a cluster cut between two activities
indicates a local drift. The authors proposed a graph showing the combined cluster cuts to provide
information about more general drifts to the business analyst. In [44], the authors include the
starting time of each process instance as an additional feature used by the clustering approaches. In
[86], the authors apply the Local Outlier Factor (LOF) to measure non-conforming traces’ distance.
Next, traces are aggregated based on a sliding windowing strategy and the calculated LOF. Finally,
authors in [61] propose a monitoring tool based on OPTICS to plot density-based trace clusters
in process’ event streams over time. It identifies temporal deviation clusters in a time-dependent
graph. We identified the relevant aspects of the approaches for detecting drifts in processes based
on trace clustering: defining the features, the clustering strategy, including the time component in
the clustering, and the output. Table 6 describes each aspect for the identified papers. The papers
are organized according to their publication year and title, in ascending order.

Features. Trace clustering techniques define a set of features obtained per trace, then group
traces with similar features together, calculating the similarity between them using a metric, e.g.,
Euclidian distance. Thus, the approaches should define how to translate the trace into a feature
vector. Authors in [44] used the Maximal Repeat Feature Set (MR) [8], obtained by counting the
maximal repeats in the entire log (concatenating all the traces with a different delimiter) followed
by a grouping task of traces with a similar sequence of activities incurring in drift detection on the
control-flow perspective. Authors in [1] defined a feature named activity distance that indicates the
distance between a pair of activities within a trace. This feature is calculated over the whole log
as a pre-processing step and allows drift detection on the control-flow perspective. A limitation
is that it cannot be used in processes containing loops. The authors in [4] defined three features
that do represent the trace: edit weighted distance (EWD), time-weighted distance (TWD), and
Time (timestamp of the last event of the trace). Both EWD and TWD are calculated using trace
and time histograms. These histograms represent the current behavior in terms of frequency
of activities (trace histogram) and time differences (time histogram). Both features indicate the
difference between the new trace and histogram information regarding the frequency of activities
or time difference. In [53, 69], the authors updated CDESF to use graph-distance trace (GDtrace)
and graph-distance time (GDtime) because histograms do not consider the order relation between
activities. CDESF calculates GDtrace and GDtime comparing the new trace (obtained from the
arrived event) and the process graph (PMG) normalized. In [61], the method uses z-scoring for the
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Table 6. Trace clustering considering the time component.

Paper Features Clustering strategy Time Output

[44] Maximal Repeat
Feature Set (MR)

Agglomerative Hier-
archical Clustering
(AHC) [2]

Timestamp of the 1st
event within the trace
as a feature.

Clusters

[1] Activity distance Cluster cuts algorithm
(defined by the au-
thors)

After training, each
trace is processed
by the clustering
algorithm

Combined
cluster cuts
graph

[4] Edit and time
weighted distances
(EWD, TWD) and
time (last event’s
timestamp)

DBSCAN [25] Time interval trig-
gers the clustering,
and time composes
features for clustering

Flow analysis
graph and
snapshots of
clusters

[53, 69] Graph-distance
trace and time
(GDtrace, GDtime)

DenStream [17] Time interval triggers
the clustering, and
time is a feature

Drift plot and
snapshots of
clusters

[61] Z-scoring of tem-
poral deviation sig-
nature (TDS)

OPTICS [3] Events stored in a
hash table using the
Cuckoo-Hashing

OTOSO
plot (time-
dependent
graph)

[86] Local outlier fac-
tor (LOF ) [11],
calculated for
non-conforming
traces

Aggregate traces with
LOF scores below (T )
in one micro-cluster,
when the 𝑛𝑜 of traces
exceeds K

The LOF computation
is performed in the lat-
est traces by using a
fixed-size sliding win-
dow

Clusters plot-
ted in a Gantt
Chart

temporal deviation signature (TDS), calculated based on the mean and variance of all time intervals
from each relationship obtained from the cases. The distance between the two traces is calculated
using the Euclidean distance. Finally, the authors in [86] calculate the (LOF ) [11], which describes
its “outlierness” concerning the surrounding neighborhood. A difference from other approaches is
that the LOF is only calculated for non-conforming traces.

Clustering strategy. Clustering algorithms group sets of data based on their similarity, maxi-
mizing intra-cluster similarity, and minimizing inter-cluster similarity [2]. They can use different
techniques: partitioning, hierarchical, density-based, grid-based, and model-based. Authors in [44]
apply the Agglomerative Hierarchical Clustering (AHC) [2] with the minimum variance criterion,
using the Euclidian distance between feature vectors. In [1], the authors define a new algorithm
to get the cluster cuts based on the variations of the activity distance (defined as an interval),
a feature also defined by the authors. The metric to calculate the similarity is defined by rules
based on the four possible interval changes: interval border outrun, smaller interval, no boundary
changes, and observation changes. In [4], the authors use DBSCAN [25], an algorithm that starts
with an arbitrary instance and expands its cluster according to density-based metrics. The algorithm
expands regions until all instances are contained in a cluster, or they are considered outliers (an
outlier has its density monitored). The main idea is that an increase in the number of instances
within the radius of an outlier over time indicates a concept drift. The updated CDESF [53, 69]
applies DenStream [17] because it is a density-based clustering method suitable for online scenarios.
In [61], the proposed monitoring tool applies OPTICS [3] to derive the density-based clusters.
Authors [86] aggregate traces with similar LOF values together without using a previously defined
clustering method. They check the traces with a LOF score below a threshold T, which indicates
the affiliation of a trace to a micro-cluster. When the number of traces exceeds a user-given number
K, these traces are aggregated into a micro-cluster.
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Time. The trace clustering approaches must consider the timestamp of the trace in the cluster
definition to detect drifts. In [44], the authors included the timestamp of the first event within the
trace as an additional feature on the definition of clusters. In the clustering strategy defined by
[1], each trace is processed as a time series (based on its timestamp), and after each trace, a new
cluster may be declared. Authors in [4] provided a framework where the amount of anomalous
traces can be obtained over time. The time component is firstly considered by retrieving events
inside a time horizon (TH) defined by a hyperparameter. By the end of the TH, the framework
updates its memory component and triggers the trace and time histograms update. Each case is
represented by a triplet [EWD – edit-weighted distance, TWD – time-weighted distance, Time –
global time], used in the clustering strategy. EWD is calculated using the trace histogram and TWD
the time histogram. Global time concerns the last event of a given case. The first CDESF version
[4] also includes time by the feature vector [EWD, TWD, Time]. In the CDESF updated version,
the end of the TH triggers the update of the process graph, indicating the current behavior. The
tuple [GDtrace – trace distance, GDtime – trace time distance] represents each case, and it is used
in the clustering strategy. Both GDtrace and GDtime are calculated from graph distance metrics
applied between the new processed trace and the current process graph. Then, the feature vector
[GDtrace, GDtime], also considers time for clustering. The Cuckoo-Hashing is applied in the hash
table containing cases as a helpful discarding technique for considering the time component in
[61]. The hash table represents a finite set of recent cases, but some older behavior is potentially
maintained because the swap operations partially regard the table. The authors in [86] include the
time component by reading the traces from a stream using a fixed-size sliding window. Gradually,
the latest incoming non-conforming traces have the LOF calculated.

Output. The output of this type of approach can be the clusters [44], a plot indicating the CP
[1], or the set of cases representing the concept drift [4]. In [44], the clusters are presented, each
one indicating a set of traces sharing the same behavior over time. A plot indicating the trace or
event where the clustering strategy decides to insert a new cluster is provided in [1]. And the
CDESF framework [4] plots all the cases considering three monitored dimensions (EWD, TWD,
and Time), highlighting the anomalous cases. The clusters that had an increase in the number of
samples within the radius of an anomalous one can be identified by the user interaction, indicating
a concept drift. In [53, 69] CDESF outputs a drift plot and a snapshot of the cluster formation. The
OTOSO plot is the output provided in [61], which is a time-based graph that allows the detection
of different structural changes in an event stream by analyzing the clusters and their connections
over time. Authors in [86] show the micro-clusters using a Gantt chart. The drifts can be visualized
when new micro-clusters appeared in the plot, and the x-axis reports the CP.

CDESF [4, 53, 69] is an approach based on trace clustering that detects concept drifts in the
control-flow and time perspectives online. The following aspects support online analysis: the input
is an event stream, it handles incomplete traces, it defines a forgetting mechanism, and it is update
version uses DenStream clustering algorithm [17], which is suitable for online scenarios [69].
OTOSO [61] is also a method for online concept drifts detection in the control-flow perspective.
Authors apply a Cuckoo-Hashing forgetting mechanism and handle incomplete traces. They apply
OPTICS [3] to derive the clusters and use a time-based graph to show the different structural
changes. On the other hand, the approach proposed in [1] is offline. It relies on the user-given
window size choice, as a low window size leads to false positives, and larger windows lead to false
negatives (undetected drifts). Besides, the method is not designed to deal with loops [45]. The
Dynamic Outlier Aggregation [86] is also classified as offline because it assumes that the streaming
events are already gathered to traces in a stream of traces. The validation of CDESF using synthetic
datasets does not apply an accuracy metric, e.g., F-score. In [20], the authors evaluate CDESF
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applying MSE and RMSLE. These metrics are not suitable for evaluating concept drift detection
accuracy in our understanding because they only indicate if the number of drifts detected is close
to the number of actual drifts, while their actual positions are disregarded.

3.3 Change point detection
CP detection methods identify the points in which multivariate time series, showing changes in
their values [70]. Authors in [82–85] apply a CP detection method named Pruned Exact Linear Time
(PELT) [34], which is indicated for datasets with limited size when the number of CPs is not a priori
known. The Visual Drift Detection (VDD) applies PELT in a pre-defined measure calculated over
Declare constraints derived from the log. Firstly, the method mines the log deriving the complete
Declare constraints alphabet (#cns is the total of constraints). Next, it splits the log using a fixed-size
sliding window and calculates the confidence (or other measure) of each Declare constraint for each
window, generating several time series 𝑇𝑖 = (Conf𝑖,1, . . . ,Conf𝑖,#win). 𝑇𝑖 contains the confidence
value for the constraint i over time (#win is the total of windows). Other metrics can be used, as the
support metric, defined in [83]. The method derives a multivariate time series 𝐷 = {𝑇1,𝑇2, . . . ,𝑇#cns}
representing the full spectrum of constraints’ confidence.

For drift and CP detection, the method applies the PELT algorithm inD, identifying the CPs where
a general change in the constraints’ behavior occurred. Another option is combining a clustering
strategy (hierarchical clustering) for splitting D into groups of constraints with similar confidence
trends, then apply PELT. The resulting clusters indicate similar behavior and allow VDD to identify
local behavior changes within the clusters. The method reports the detected CPs in one Drift Map
(describing the behavior in all clusters) and several Drift Charts (showing the behavior for each
cluster). The Drift Chart allows the user to localize the constraints related to change and visually
characterize the local drifts [82, 83] into sudden, gradual, recurring, or incremental (challenges 3 and
4). The user can also inspect if the detected CP has an outlier behavior. In [84, 85], the tool reported
different measures to complement the visual analysis of Drift Charts for identifying the type of the
reported drifts. VDD shows the PELT results for sudden drifts, stationarity analysis (Augmented
Dickey-Fuller test) for identifying gradual and incremental drifts, and autocorrelation plots for
recurring drifts. VDD also allows the visualization of the changes identified in the drifts within the
process model. The tool shows the process map (graph) for the complete event log enriched with
the different constraints identified for each cluster [84, 85], providing a mixed visualization.
VDD requires three parameters: window size (to split the event log), window step (value for

shifting the sub-log window), and cut threshold (for the clustering strategy). One drawback of this
method is that the detected CPs are sensitive to the parameter configuration because the window
size determines the granularity of analysis. The method suggests values for the window size and
window step in [83, 84], but this suggestion is based on a good visualization of the plots, not on
tuning the accuracy of the tool. In [83, 84], the authors conclude that the window size does not
introduce a significant difference in the results; however, this conclusion is not supported by the
performed experiments.
The evaluation of VDD using synthetic datasets performed in [83, 84] is unclear. The authors

compare VDD with Apromore [57], but the experiments do not include the complete dataset
(datasets are also described using different names), and it is not clear how the authors calculate the
F-score. The evaluation using real-world datasets [83, 84] reported that VDD described all types of
process drifts comprehensively. Using the BPIC 2011 dataset, the experiment detected all the drifts
reported in [46]. All the experiments using real-world datasets in [83, 84] provided an overview of
the tool and its user interface, which is complemented in [84] by a user study performed with PM
experts reporting that the “visualizations are easy to interact with and useful”.
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3.4 Visual analysis
Some authors propose to compare traces (or process models) using a windowing strategy and
plotting the differences for visual analysis. Comparing the current time window with the previous
one is performed by comparing some specific aspects from the traces without using any statistical
test. These works’ output is usually a plot with the aspect calculated for a set of traces over time. As
a result, the business analyst must analyze the plot to identify the drifts. We have considered studies
able to detect drifts in a complete perspective of the process, e.g., control-flow or time. Works
comparing a specific attribute, e.g., the time interval between two activities, were not considered.

Authors in [32] propose to split the event log based on non-overlapping time windows (by events
or minutes) and calculate a similarity matrix for each sub-log. One advantage of this approach is
that the matrix can consider any attribute of the event log (from case or event), and an age-decay
factor corrects the similarity values. The age factor is applied to reduce the similarity of events
apart in time. The differences between adjacent matrices are plotted over time, and the spikes
indicate potential drifts. After identifying the drifts, the authors use a clustering strategy to explain
them based on previously chosen attributes. This approach is not listed in the clustering approaches
because clustering is not used to detect the drift but to analyze the effect of the changing behavior.
The method proposed in [12] calculates the Earth Mover’s Distance (EMD) based on the trace

descriptors obtained for sub-logs using a sliding fixed-size window. The approach plots the EMD
value in a heatmap showing the values for different window sizes. The user can also inspect the
EMD value in a plot for a specific window size. Based on the EMD values, the user can identify
potential drifts. A differential of this approach is that EMD can be calculated using the control-
flow perspective considering frequencies, time perspective (service and sojourn), and a holistic
combination of control-flow with time. This drift detection approach allows different perspectives
on the process models because of EMD’s flexibility regarding the choice of the representation and
the distance measure. The approach was experimentally evaluated using one synthetic log, showing
that different control-flow types and time-dependent control-flow drifts can successfully be detected.
However, further evaluation is needed for applying the approach in real-world scenarios.
In [37], the authors proposed a manual structured method for concept drift analysis based on

the PM2 method [24]. The method compares processes in three levels: process model, trace, and
activity levels. The comparison between process models generates a plot showing replay fitness,
precision, and generalization metrics over time. Using this plot, users can identify potential drifts
(without the exact location). All the metrics are calculated using a process model discovered by the
interactive Data-Aware Heuristics Miner (iDHM). In [36], the authors extended the work applying
four miners for performance comparison: Integer Linear Programming (ILP), the interactive Data-
Aware Heuristics Miner (iDHM), the Inductive Miner (IM), and the Inductive Miner Infrequent
(IMf). The trace and activity analysis can provide information about time and data perspectives but
not considering the whole perspective. The authors applied the method to the route to the diagnosis
of patients with endometrial cancer over fifteen years. The outputs graphical data visualizations
supported discussions about process evolution and changes with domain experts.

3.5 Change detection
Authors in [18] report the use of a change detection algorithm, ADWIN [7], to identify a drift in
event data. The method translates the events into an abstract representation by converting the initial
traces from a stream into Parikh vectors [58]. From the Parikh vector, it is possible to derive the
polyhedron (𝑃�̂� ). Next, the polyhedra 𝑃𝜎1, 𝑃𝜎2, . . . , 𝑃𝜎𝑘 can be derived from the 𝑘 traces. Finally, the
approach learn the convex-hull of the points represented by the polyhedra 𝑃𝜎1, 𝑃𝜎2, ..., 𝑃𝜎𝑘 , which
is a representation of the log (the learned concept). The detection of the drift is then estimated by
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the ADWIN method, which maintains a window𝑊 of variable size of instances, that is compared
at a certain point in time with a previous window. The algorithm automatically grows its window
when no change is apparent and shrinks it when data changes. The mass of the polyhedra identifies
drifts by updating the𝑊 with 1s (ones) or 0s (zeroes). If the polyhedra (initial concept learned)
include the new point observed in the detection stage, its internal window𝑊 is updated with 1,
otherwise with 0. When the mass of the polyhedra changes significantly, ADWIN algorithms flags
a change with no need to evaluate other parameters. ADWIN also provides rigorous guarantees of
its performance, bounding the rates of both false positives and false negatives [58].
The main drawback of this approach is that it only detects the first drift without identifying

the CP. Furthermore, its validation was performed on a small dataset with no considerably set of
change patterns. However, this is the first online method to detect concept drifts in processes. This
method is also complex and time-consuming since each trace is transformed into multiple prefixes,
which are then randomly selected to derive the polyhedron [41]. Another consideration should
be highlighted as, despite being an online method by definition, the validation performed on the
paper considers a stream of traces as each trace is converted into several Parikh vectors instead of
events. Therefore, to verify the method in an online setting, the Parikh vectors should be created
based on an event stream.

In [31], the authors propose StrProMCDD, which applies the ADWIN method [7] to detect drift
in an event stream. StrProMCDD collects a batch of events in a pruning period (fixed size defined
by the user), computes the frequency list for these events, and includes the new frequency list
in a temporally ordered list used by ADWIN. A frequency list is a structure containing each pair
of activities observed with the respective directly follows relation’s frequency. A directly follows
relation indicates that an event follows another event within a trace [71]. Because ADWIN builds
its observation window based on real numbers, the authors proposed different distance measures
derived from the frequency lists: relation frequency distance, dependency and edge distances,
activity frequency distance, routing distance, and relative importance distance.

An advantage of StrProMCDD is that it reads events in a stream in a single pass and inherits the
time and memory efficiency from the ADWIN method [7]. However, the method reads the events
in batches, and no validation about the impact of different sizes of these batches is reported. Also,
the authors report the F-score metric in [31] without clearly defining what is considered as a drift
in the method. The plots indicate the size of the adaptive window, and a sharp drop indicates a
drift, but it is not clearly defined what threshold triggers a drift. The method also solely addresses
the drift detection challenge without reporting the CPs.

Another approach based on a change detection method is proposed in [33]. The authors adapted
a pattern-based change detection (PBCD) algorithm, named KARMATree, to detect and characterize
drifts on event logs. The events are encoded as a dynamic network to be consistent with the data
representation requirements of the PBCD, which represents a sequence of graphs obtained from
the traces in the log (treated as time series). Each graph snapshot (G) represents a trace (T ), having
an edge for each activity name. One advantage of this representation is that more perspectives of
the process model can be included. Yet, the authors only validate the approach using control-flow
changes. The authors in [33] validate the accuracy of the KARMATree approach compared with
Apromore ProDrift fixed/adaptive using Runs [45], and ProM adaptive [51] using synthetic logs.
The comparison considers F-score and running times with a well-defined experimental protocol
(clearly reporting that parameter minMC was tuned for the proposed approach). However, neither
the synthetic dataset nor the source code is made publicly available.
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3.6 Trend detection
Authors in [62, 63] applied a trend detection method called Tesseract adapted from the text mining
area for temporal drift detection in event streams. Tesseract contains three main parts: (i) monitoring
the event stream for collecting the activities’ completion times; (ii) calculating a significance score
based on the calculated times and an indicator function; and (iii) visualizing the results. The
significance score indicates how far a new observation (time interval between activities) is from
the mean value, and it is an adaption from the SigniTrend [65] approach (trend detection method
from text mining area). However, because of the non-stationary stream environment, the proposed
score has exponentially decaying means and variances, and then it is smoothed again (second
decay factor) to be a stable indicator. Both decay factors are defined by the user and affect the
drift detection. Choosing much smoothing allows the method to rely on significant drift alerts but
increases the detection delay and makes it hard to detect short-term anomalies.

Tesseract is implemented as a ProM [74] plugin and considers the stream requirements: proposes
an adapted Cuckoo hash-table [26] as a data structure with fast performance for look-up, updating,
and deleting; controls memory consumption; deal with a stream of events; minimizes the detection
delay. A limitation of Tesseract is that the approach only detects drifts in the time perspective.
The reported experiments validate the approach using synthetic and real datasets, indicating that
Tesseract is robust to noise and can detect sudden, incremental, and recurring drifts (only by visual
inspection). The authors do not evaluate the accuracy of the method using a metric like the F-score.
They evaluate the drift in the synthetic dataset by calculating the detection delay, which is the
number of events between the start of the drift and the event that triggers the detection.
The Tesseract is not classified as a visual analysis approach because it adapts a trend detection

method to automatically triggers the drifts when the significance score is of a minimum number
of events shift the value out of the in-control limits, addressing both drift and CP detection. The
output of the method is a Control chart with Tesseract values and a Gantt-Chart that plots the
Tesseract values exceeding the thresholds, indicating the temporal drifts. The user has to select a
pair of activities to visualize both plots, which also provides the change localization of the drift.

3.7 Other approaches
Some authors propose different approaches to deal with concept drift in processes that do not fit
into any of the previous categories. These approaches are detailed below.

3.7.1 Tsinghua Process Concept Drift Detection (TPCDD). TPCDD [88], is a three-stage approach
based on two process similarity algorithm, TAR [87] and BP [78], and a clustering strategy. TPCDD
handles both drift and CP detection. First, TPCDD creates a relation matrix containing all relations
on the traces in the lines and one column for each trace of the event log. This is a limitation of the
method to handle complex and large logs. In the second stage, each line of the matrix is inspected
to identify intervals containing a stable same frequency level, classified in always, never, and
sometimes intervals. The intervals have a minimum size defined by a parameter named minimum
relation invariance distance (MRID). Each cut between intervals is defined as a candidate CP. In the
third stage, TPCDD applies DBSCAN [25] in the set of candidates CPs to identify the points to be
reported as change. DBSCAN parameters: the maximum radius of a neighborhood (eps), and the
minimum number of points required to form a dense region (minPts), are also TPCDD parameters.

The validation of the approach uses the processmodels from [45] but with different configurations.
The authors generated 32 mixed logs with different models and sizes that were not made publicly
available. The accuracy of the method is highly affected by the MRID and the DBSCAN main
parameters (eps, and minPts), and the authors did not provide insights on how to define them.
Another drawback is that the reported CP indicates the center of the cluster, which can be an
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invalid trace index. The authors described a TP when the CP detected is inside a neighborhood of
the precise drift timestamp regarding the F-score metric. Yet, by analyzing the plots with the results,
the neighborhood is defined by a number of traces defined by the Error Tolerance (ET ) parameter.
Even though the paper describes the validation using the F-score compared to the baseline in [45],
there is a lack of information that does not support the validation process. The authors define two
types of relations: direct succession relation (DSR) and weak order relation (WOR), and TPCDD uses
both; however, the experimental protocol did not define which one is applied. The hyperparameters
used during the comparison against the baseline (MRID, eps or minPts) were left undefined. We
consider this approach relevant as it uses a simplification of the process model (graph) to extract
the relations, avoiding the bias of the discovery algorithm. Also, the clustering strategy in the
candidate CPs differentiates this approach from the others identified in this survey. However, the
variation trend analysis has a lack of statistical foundation.

3.7.2 Local Complete-based Drift Detection (LCDD). The approach proposed in [40] applies the
local completeness (LC) property of event logs defined in [81] for drift detection. The idea is that it
is possible to assert (with a defined confidence level K) that a log satisfies LC in a limited length.
Based on this assumption, LCDD defines the minimal length (ML), i.e., the minimal number of traces
for a log L to assure LC with K. The detection approach starts by obtaining the direct succession
(DS) relations in a complete window (CW ), which can be defined based on the calculated ML
values. Then, it reads traces of the next detection window (DW ), obtains the DSs, and identifies
two features: new DSs and disappeared DSs. A new DS or a disappeared one after CW in the DW
indicates a drift. The CW and DW have the same effect as applying sliding windows. LCDD defines
the trace with the new DS as a CP. If a pre-existent DS disappears in the DW, LCDD considers the
initial trace of DW as a candidate CP. LCDD combines the stable period (sp) to define the exact
CP. The value of sp indicates the number of traces to be considered a stable period (configured by
parameter). After reading sp traces, if there are no more disappeared DSs, the start of sp period is
declared as a CP. LCDD also implements an adaptive window based on increasing the complete
window size by minWin (parameter) in each round.

The authors in [40] performed several experiments to evaluate the accuracy of LCDD using the
ML equation to support the definition of the CW parameter. The accuracy of the fixed windows
obtained using synthetic logs is considerably higher than other approaches: Runs and Alpha
options from Apromore ProDrift [45, 57], and TPCDD [88]. However, all the compared approaches
apply sliding window strategies, but the window size parameter was set to the default value.
In LCDD, the CW parameter was defined based on the ML value. Unfortunately, the papers do
not report experiments applying the value calculated for LCDD (200) as the parameter for the
compared approaches. There is an interesting statistical foundation in the definition of ML, which
is a differential of LCDD when comparing it with other fixed sliding window approaches. However,
the synthetic datasets used in the validation contain a fixed interval between drifts, which may not
represent the real-world behavior. The adaptive approach experiment shows that the accuracy of
LCDD is sensitive to theminWin parameter. Yet, tuning this parameter can result in higher accuracy
when comparing to the default parameters applied to the compared approaches. Authors in [40]
also report a real-world experiment comparing LCDD performance against the same methods
applied to the synthetic datasets. Because LCDD proved to be not robust to noise, the authors apply
the method defined in [21] to obtain similar results to the compared methods. In summary, the
accuracy of LCDD is sensitive to the CW parameter (but theML equation addressed this drawback),
LCDD is not robust to noise, and the accuracy of the proposed adaptive window is sensitive to the
parameter minWin.
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3.7.3 Framework for “online” process concept drift detection. In [41], the authors proposed an
approach based on the footprint matrixes containing the 𝛼 relations between each pair of activities.
First, the method generates a process model from initial traces (a parameter defines the number
of traces). Then, the approach checks each new trace by extracting its footprint matrix. Next,
the framework compares the matrix of the new trace with the matrix of the current model to
identify differences, classified in adding existent or nonexistent activities, removing activities, and
altering adjacent relationships between activities. The method applies a metric named process
model precision to identify the need to remove process model activities. A difference between the
matrixes indicates a drift, and the method returns the activities and the difference to localize and
characterize the drift, indicating if the drift is sudden or recurring. There is a filter to consider a
trace when it appears more times than a threshold set by the user to avoid noise traces.

Despite being reported as an online method, the definition of an event stream represents a stream
of traces. Consequently, the method is not suitable for an online setting. The paper reports that
the method is able to identify incremental and gradual drifts, but there are no details about the
types of drifts handled by the algorithms or in the validation protocol. Besides, the localization
and characterization returned by the algorithms are not validated by the reported experiments.
The validation process is not clearly defined; the F-score definition is provided, yet, it is limited for
assessment of single-drift scenarios, and the detection error is not explained in the paper. Despite
the shortcomings, the approach shows a distinct method to detect drifts based on the footprint
matrix and the precision of the process model.

3.7.4 Detecting concept drifts based on process histories from event streams. The approach proposed
in [67] is based on the discovery of process models providing what the authors named a process
history. After reading a new event, the method calculates the fitness of the updated trace (from the
case of the new event) for the current model in the process history; a small fitness value (under a
pre-defined threshold) triggers the discovery of a new process model, which represents a concept
drift. The approach uses an adaptation of the Inductive Miner [39] for streams for discovering
the process models, based on the Stream-based Process Discovery (S-BAR) architecture defined
in [76]. The proposed algorithm handles memory restriction by delimiting the 𝑡𝑟𝑎𝑐𝑒map structure,
which is responsible for storing the 𝑘 last traces updated with an event. For conformance checking,
the algorithm applies the fitness based on alignments, using the cost for move on log only. One
drawback of using the proposed fitness calculation is that if the algorithm discovers a generic model,
the fitness will stay with high values, not triggering the insertion of a new process model in the
history (no drift will be detected). This is acknowledged by the authors, which propose a periodical
model discovery using all traces in the 𝑡𝑟𝑎𝑐𝑒map, to detect a stricter model, but this could lead to
big mixed process models. Another drawback of this approach is that the validation indicates that
there is no initial setup of the process history. When the first event is received from the stream, a
new model is mined. As a result, the method identifies incremental concept drifts during the initial
events processing, potentially generating false alarms. The method does not report the CPs, just
the drift indication and its type (sudden, gradual, incremental, or recurring).

The validation of the method shows that the four types of drift have been detected. Nonetheless,
the validation also indicates that the approach misses some concept drifts injected in the synthetic
dataset (for the online environment). The dataset used contains a small process with simple
control-flow changes, and authors do not evaluate the processing time for mining a new model or
calculating the fitness after each new event is received. Despite the identified drawbacks, authors
in [67] present an entirely distinct approach to detect drifts based on discovery and conformance
for online environments. This work is extended in [68] to identify concept drifts from the data
perspective, validated using a real-world dataset.
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3.8 Comparing tools for drift detection
We identified two papers addressing drift detection without proposing a new technique. They
compare existing drift detection tools and report the results. It is essential to highlight that we did
not find any paper comparing online PM approaches considering evolving environments.

In the first paper [54], the authors compare Apromore ProDrift and the Concept Drift plugin from
ProM considering a set of characteristics: detectionmethod, windowing, feature selection, sensitivity,
noise handling, type of drift, type of input (log or stream), and user interface. The qualitative analysis
of each aspect helps describe both tools. However, there is no accuracy evaluation for the methods
based on objective metrics, e.g., F-score. Both methods were applied to a real-world dataset.
Authors in [20] discuss the properties needed for online PM techniques by defining a set of

evaluation goals and evaluate the fulfillment of the defined goals for identified techniques from
the state-of-the-art. The paper identified the following goals for online PM: (i) minimize memory
consumption, (ii) minimize response latency, (iii) minimize the number of runs, and (iv) optimize
accuracy. A set of online process discovery and online conformance checking techniques have been
evaluated considering the defined goals. It is essential to highlight that the papers selected in [20]
do not follow the same criteria defined in our SLR, which is that the online PM approach should
report a validation scenario containing drifts. An exciting conclusion of the study proposed in [20]
is that concept drift detection is a central issue for online PM. However, concept drift techniques
are usually not integrated with online PM tasks. This conclusion corroborates with the low number
of papers identified on the branch named online PM dealing with evolving environments. Because
of the importance of concept drift detection for the online PM, the authors compared different
concept drift detection tools, limited to open-source software or tools that provide the source code.
The paper reports the fulfillment of the goals defined for online PM for each tool and reports a
performance evaluation, applying two metrics (from regression methods): mean squared error
(𝑀𝑆𝐸) and root mean squared logarithmic error (𝑅𝑀𝑆𝐿𝐸). We argue that both metrics are not
adequate to measure the accuracy of the drift detection because they consider the presence of the
drift but not the CP. So, the conclusions mainly concern the drift detection challenge. The paper
publicizes a new dataset including the four drift types identified in the literature (sudden, gradual,
incremental, and recurring), articulated according to control-flow and time perspectives [19].

4 ONLINE PM DEALINGWITH EVOLVING ENVIRONMENTS
PM techniques are usually classified into discovery, conformance checking, and enhancement [71].
All these tasks can be executed online or offline, and in both situations, concept drift can introduce
a challenge. In our SLR, we identified several approaches for detecting concept drifts that can be
combined with offline techniques for discovery, conformance checking, or enhancement. When the
analyst identifies the drift point, it is possible to split the event log and apply traditional offline
techniques on the resulted sub-logs. However, in online analysis, drift detection may not be enough.
For instance, in a process discovery scenario, even if some online drift detection technique reports
a drift in an event stream, there still some open issues, i.e., is it possible to mine the model from
scratch considering response time limitations? How many events should be used to mine or update
the new model? Some papers dealing with concept drift in PM focus on proposing online PM
techniques in an evolving environment because of questions like these. We have only found seven
papers classified into this branch, and we justified this number of studies (fewer than concept drift
detection) because PM research still mainly focuses on offline analysis. Yet, the identified papers
only describe process discovery techniques that handle concept drift in online analysis. In the
approaches to adapt discovery algorithms after a drift, the challenge may not explicitly detect the
drift but enhance the algorithms with adaptive or incremental abilities. We name this challenge as
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streaming process discovery dealing with evolving environments. We have considered solely the
works that validate the streaming discovery approach with a scenario involving concept drifts.

4.1 Streaming process discovery dealing with evolving environments
In [15], the authors propose different versions of the Heuristics Miner (HM) [79] to deal with
event streams, adapting the algorithm using a moving window. Three approaches are designed
for evolving environments: HM with Sliding Window (SW), HM with Lossy Counting (LC), and
HM with Lossy Counting with Budget (LCB). HW with SW is the simplest approach: first, the
process collects events for a given time window, derives an event log, and then applies the classical
version of HM. Besides the simplicity, this approach can apply any existing PM algorithm. However,
in this approach, only the more recent events are considered, with equal importance. The model
update is not constantly triggered, and the algorithm must handle each event at least two times: to
store it in the event log and for deriving a model update (not desired for online analysis). The HM
with LC applies an adaptation of the standard LC approach [48], where the batch version of the
directly-follows measure is calculated over an event stream. The algorithm interacts with three data
structures: one to count the frequencies of the activities (DA), one to count the frequencies of the
direct succession relations (DR), and another one to keep track of distinct cases running at the same
time (DC). Because of the concept of “buckets” and the cleanup procedure (based on the maximum
approximation error allowed) from LC, the algorithm forgets the old behavior. The LC strategy
does not limit memory usage, which can be a problem in streaming environments. The LCB [50]
addresses this issue by adapting the approximation error according to the stream and the available
budget, i.e., the maximum memory that the algorithm can use. The authors compared the three
algorithms using a synthetic event log simulating two concept drifts. The HM with SW reports
almost always the worst model-to-model similarity. HM with LC and HM with LCB are basically
equivalent, showing the capability to detect the drifts and the corrected model. Experimental results
show the effectiveness of control-flow discovery algorithms for streams on a real dataset.
In [47], the authors also propose a framework for the online discovery of declarative process

models from streaming event data. Two algorithms for frequency counting are implemented in
ProM [74]: SW and LC. The authors validate both algorithms using a synthetic log containing
sudden drifts. The authors designed three algorithms, each tailored to identify one kind of change
template in the Declare constraints: response and not response constraints, precedence and not
precedence constraints, and responded existence and not responded existence constraints. The
approach is extended in [14], by including the LCB algorithm for frequency counting. The discovery
algorithms are also adapted to apply two different notions of constraint support: event-based and
trace-based, and they are now able to discover the entire Declare language. The output of the
updated discovery algorithms is also enhanced by providing an updated picture of the process
model at runtime (LTL-based business constraints) and information about the most significant
concept drifts identified during the process execution. The authors performed different experiments
with a larger set of synthetic logs and with a real-life event log (public available). The complete
implementation is available in the StreamDeclareDiscovery plugin in the ProM framework [74].
Another study [13] complements the approaches mentioned above by focusing on the dynamic
visualization of the Declare models over time. The concept drifts can be visually inspected using
the trend line plot containing the total of Declare rules discovered over time.
Authors in [76] proposed a generic architecture, named stream-based abstract representation

(S-BAR), which allows the adaptation of conventional discovery algorithms for online analysis. Any
discovery algorithm that maps events into an abstract representation to derive a process model can
be adapted by two steps: defining a function for mapping an event log to the abstract representation
needed for the algorithm and maintaining a data structure tracking the abstraction’s information.

, Vol. 1, No. 1, Article . Publication date: July 2020.



30 Sato, et al.

S-BAR architecture defines some options for the data structure, which should be combined with
a forgetting mechanism because of the stream requirements. Several instantiations of the S-BAR
are implemented in plugins in ProM [74]: 𝛼-Miner, Inductive Miner, Heuristics Miner, Transition
System Miner (state-based regions), and ILP (language-based regions). The Inductive Miner-based
instantiation of S-BAR (based on LC) is validated using an event stream containing one gradual
drift with two change patterns. The validation showed that the algorithm is able to adapt the model
to the new concept, which is indicated by the replay fitness calculated over time. The experiment
also showed that a data structure with more capacity implies the drift being reflected longer.
In [6], the authors adapted the Fuzzy Miner algorithm [30] to the streaming scenario. The

implementation of the streaming Fuzzy Miner is integrated into the real-time business process
monitoring (RTBPM) software [5], following the steps: (i) receive and store event into the database;
(ii) classify the events; (iii) check if the cases are completed; and (iv) calculate log-based metrics.
Specifically, one step of the original Fuzzy Miner is adapted: measuring log-based metrics. The
adaptation consisted of organizing calculations to show the changes in a process model in near
real-time mode (using as minimal computational resources as possible) to the user. For dealing with
drifts, the authors include new metrics: drift unary significance metric, drift binary significance
metric, and drift binary correlation metric. The included metrics were calculated between the
log-based and derivate metrics (from the original Fuzzy Miner), so the logic for the other metrics
remained almost the same. The validation applies the newmethod to a real-world dataset, comparing
the process model generated from the original Fuzzy Miner with the one obtained with the new
algorithm. The original Fuzzy Miner derives a process model with an infinite loop, which is not
present in the model derived from the streaming Fuzzy Miner. Nonetheless, neither the source code
or executable files were made available by the authors [5].
Another streaming process discovery algorithm is proposed in [60]. The authors adapted the

Constructs CompetitionMiner (CCM) algorithm to the streaming environment, considering changes
in the behavior. The original CCM applies a divide-and-conquer strategy to mine a block-structured
process model from the footprint matrix describing directly-follow relations. In CCM, distinct
calculated global relations between activities compete with each other for the most suitable solution.
The discovery process also handles noise and not-supported behavior. The proposed Dynamic CCM
(DCCM) [60]) splits up the original CCM into two parts: (i) footprint update and (ii) the footprint
interpretation. For every event, the footprint update module updates the dynamic footprints. DCMM
can then compute the dynamic footprints at any point in time be compiled to a business process by
the footprint interpretation, scheduled based on a configured number of completed traces. Older
behavior is handled by an aging approach applied by the footprint update module. It is created an
individual trace footprint (TFP) for each trace and adds it multiplied by the trace influence factor
tif ∈ 𝑅 to the current dynamic overall footprint (DFP) multiplied by 1− tif. With this mechanism
the influence of a trace completed 60 traces ago became almost irrelevant for tif = 0.1. New
activities are added to the overall footprint as the trace terminates. Activities that do not appear
anymore are removed from the dynamic footprint based on a removal threshold tr. The authors
[60] validate DCMM in a scenario with a sudden drift in the control-flow perspective. They analyze
the change to the business process and report the behavior of the DCCM, the change detection
(comparing the trace with actual drift and the detected one), and the change transition period. The
reported conclusions indicate that the trace influence factor is a pre-specified value, but it depends
on how many traces one must consider representing all the behavior of the process model, which
renders the definition of an optimum or even fair value challenging. We did not find any paper
comparing the online PM approaches focusing on concept drift scenarios.
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5 ACHIEVEMENTS AND CHALLENGES
Drift detection is a hot research topic, and the authors address different challenges: drift detection,
CP detection, change localization, change characterization, and revealing the changing process.
Of the 45 selected papers, 38 of them (approximately 84%) deal with process drift detection, and
the most addressed challenge is CP detection (29 papers). Seven papers propose adaptive process
discovery techniques for dealing with evolving environments, thus depicting that the PM area is
still focused on offline analysis. The most addressed problem is CP detection (Figure 9 b) in the
control-flow perspective (Figure 9 a). Papers addressing more than one perspective are counted for
each perspective; the same applies to the challenges plot (Figure 9 b). Regarding the drift perspective,
most approaches deal with drifts in the control-flow perspective. The data perspective is explored
in [32, 59, 68], and the time perspective is explored in [4, 12, 53, 62, 63, 69].

(a) Counted by perspective. (b) Counted by challenge.

Fig. 9. Drift detection papers.

Despite being the most addressed problem, it is difficult to compare the distinct approaches for
drift detection in PM. The validation of the detected CP is not always performed using an objective
and well-defined metric. Even when the papers report a metric, there are some open questions about
how they are computed or regarding the validation protocol. For instance, from the 29 papers that
propose a new technique for CP detection, only 14 papers [31, 40, 41, 45, 46, 51, 55–57, 66, 83–86]
use the F-score to validate their results. Yet, the definition of what a TP, TN, FP, or FN stands for
is overlooked or different from the definition provided in other papers. We understand that the
F-score metric properly describes the accuracy of the detected CPs if the authors define how the
true/false positives are counted. We suggest that the TPs can only score CPs detected after the
real CP inside a neighborhood pre-defined. The idea of an Error Tolerance (ET), described in [88],
similar to the objective evaluation using a lag period proposed in [40, 51], can be adapted to define
this neighborhood. The main difference between the current proposals is that we argue that the lag
period should be considered only after the real drift position and not before it, as drift detection is
a reactive process rather than a preemptive one.

The two leading software that provide a tool for drift detection, Apromore [38], and ProM [74],
do not report validation metrics in the user interface, e.g., F-score. This hardens the comparison
between different methods. We identified only two papers [20, 54] that compare tools for drift
detection in PM. The authors in [54] do not report a metric for comparing the accuracy of the
detected drifts and perform the experiments using a real-life dataset, which is not the best choice
when comparing approaches because the real drift points are not known a priori. In [20], the drift
detection accuracy is compared using two metrics applied to regression models (𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐿𝐸).
In our understanding, by calculating these metrics, the authors could verify if the approaches
detected the correct number of drifts, but the detected drift can be very distant from the actual
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one. Therefore, we were unable to find any tool available to compare different approaches for drift
detection. Providing an easy and common way of comparing different approaches is a challenge in
the area. Another challenge is the set of synthetic event logs publicly available. We only identified
three datasets (Appendix A) with concept drifts in event logs, and their configuration does not
reproduce different drift intervals or a mixed combination of different types of drift expected in
real life. The approaches can evaluate their accuracy based on real-world datasets when experts
are available for validation to overcome this issue. However, we argue that the tools for generating
synthetic datasets should be improved considering changes in processes for future research.

In several approaches for drift detection, the user must set different parameters, and these param-
eters affect the accuracy of the results. Another challenge is to provide an intuitive and interactive
interface, where one can easily change the parameters to tune the results. Some approaches in-
tend to be fully automated, using pre-defined values for the parameters [45, 46, 57]. However, for
different datasets, it should be interesting to provide a way to tune the hyperparameters’ values.
Most papers propose statistical tests over some features extracted from event logs or streams

considering the adopted approaches. They apply the statistical tests using fixed or adaptive windows.
However, the authors usually propose the adaptive approaches without rigorous guarantees of
performance as bounds on the rates of false positives and false negatives. Only two approaches
[18, 31] for adaptive windows use the ADWIN method [7], which provides such guarantees. We
understand that statistical-based approaches can also enhance adaptive windowing strategies. Also,
the application of change detector algorithms (PELT) is reported only in one approach [82–85].
The validation of online and offline approaches should follow different experimental protocols.

The online setting requires an event stream and has other limitations, e.g., memory consumption
and processing time. The experimental protocol of some online approaches only considers the
processing time or fails to validate the complete online scenario of analysis. We argue that an event
stream is a proper input for online methods because of the restrictions of the online setting, and
the experimental protocol should explicitly detail how the method handles: memory, time, and
accuracy restrictions. For dealing with concept drifts, the online setting imposes new challenges:
the time for drift detection is a critical factor, the number of events needed after the drift occurred
is essential, the number of events stored for the analysis must be considered, and the approaches
should consider incomplete traces. Besides that, some approaches for online concept drift detection
in PM deal with a stream of traces, waiting until the trace is complete and thus, violating the
restriction to deal with incomplete traces. We classified these approaches for offline analysis.

6 CONCLUSION
Despite being a relatively new research topic in the PM community, we found different approaches
to deal with concept drift in processes. We categorize the approaches into two main branches:
explicitly detect the drift and adapt process mining techniques to deal with event streams in an
evolving environment. The primary efforts concern the detection of the concept drift, usually
handling the drift and the CP detection in the control-flow perspective. Seven studies have been
found on stream process discovery dealing with evolving environments. We believe this reflects
that the PM area is still focused on offline analysis, especially when the need is for understanding
the real processes. The IC defined for the SLR only considers papers with online process mining
approaches that evaluate the method using a scenario containing drifts. We identify few synthetic
datasets for this type of validation, and real-world datasets are not suitable because we do not know
a priori if there is a concept drift. We summarize the following challenges for concept drift in PM:

• Enhance the experimental protocol. The use of a detailed metric to evaluate the approaches,
either for online and offline analysis, is required. Our suggestion is the use of the F-score, yet,
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following a precise and clear definition on how to count the true/false positives/negatives,
considering an error tolerance, and applying the metric in artificial datasets.

• Enhance the online experiment protocol, considering the restrictions of the online environ-
ment: detection delay, memory usage, the processing time for each event, and input as an
event stream, for instance.

• Include validation in datasets without drifts. The methods are highly sensitive to parametriza-
tion, which may lead to false positives. The validation of different thresholds for avoiding
the false positives for the proposed parameter can improve the evaluation and robustness of
the proposed methods.

• Develop tools for easily comparing the results of different approaches within distinct datasets.
Such tools should provide an easy interface to change the parameters and evaluate results.
Also, these tools may provide synthetic datasets.

We are in the fourth industrial revolution, Industry 4.0, where one of the five significant features is
automation and adaptation. Business processmanagement (BPM) is one of the industrial information
integration methods needed, fulfilling the continuous improvement of business processes [43]. In
the context of Industry 4.0, the business process is even more automated and flexible, increasing
the need for tools for monitoring and improving the business process in evolving environments.
PM provides powerful tools for analyzing, monitoring, and improving the processes; however, the
main state-of-the-art techniques do not focus on online and evolving environments. Dealing with
concept drift in PM can improve the benefits of this application in the Industry 4.0 context, thus
allowing the application of PM techniques in evolving environments.
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A APPENDIX - SYNTHETIC DATASETS DESCRIPTION
(1) Business Process Drift – [45] - 75 event logs

Link: https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
Type of drift: sudden. Perspective: control-flow (12 simple and 6 complex patterns).
Size and interval between drifts (traces): 2500 (250); 5000 (500); 7500 (750); 10000 (1000).
Number of drifts: 9 drifts in each log

(2) Logs Characterization – [55] - 375 event logs
Link: https://drive.google.com/file/d/1xYuai8-HBrCZLSAuZMGPv7IJzOjbEsaY/view
Type of drift: sudden. Perspective: control-flow (65 logs with single changes, 30 logs with
composite changes, and 30 logs with nested changes)
Size and interval between drifts (traces): 3000 (1000)
Number of drifts: 2 drift in each log
Noise: two variants with 2.5% and 5% noise (inserting random events into the traces)
Complementary information: Highly variable logs with trace variability around 80%.

(3) Synthetic Event Streams - [20] - 942 event streams
Link: https://ieee-dataport.org/open-access/synthetic-event-streams
Type of drift: sudden, gradual, incremental, recurring. Perspective: control-flow (16 change
patterns), time. Size (traces): 100, 500, and 1000
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Number of drifts. Sudden: 1 drift injected in the middle of the stream.Recurring: 2 drifts –
for streams with 100 traces, cases follow the division 33–33–34 (the initial and the last groups
come from the baseline, and the inner one is the drifted behavior); for 500 and 1000 traces,
the division is 167–167–166 and 330–330–340. Gradual: 1 drift (20% of the stream represents
the transition between concepts). Incremental: 2 drifts (an intermediate model between
the baseline and the drifted model is required; 20% of the stream contains the intermediate
behavior, so the division was 40–20–40, baseline–intermediate model–incremental drift)
Time drifts. Baseline behavior: the meantime is 30 min, standard variation is 3 min. Drifted
behavior: the mean and standard variations were 5 and 0.5 min. Incremental drift: the
transition state (20% of the stream) was split into 4 parts where standard time distribution
decreases 5 min between them, following the incremental change of time.
Noise: 4 variants with 5%, 10%, 15%, and 20% (removing the first or the last half of the trace)
Complementary information: The arrival rate of events fixed to 20 min, the time distri-
bution between events of the same case follows a normal distribution. For time drift, the
change affects only the time perspective.
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