
Adaptive Global k-Nearest Neighbors for Hierarchical Classification of
Data Streams*

Eduardo Tieppo1,2, Jean Paul Barddal1 and Julio Cesar Nievola1

Abstract— Data stream classification differs from batch
learning classification methods as data is made available se-
quentially and may drift over time. Therefore, data stream
classification can be simultaneous to all other kinds of classifica-
tion problems, and it has been revisiting many aspects related to
classification in the last years. So far, hierarchical classification
was weakly addressed in streaming scenarios despite being
a well-established research topic. To fill in this gap between
such areas, in this paper, we propose the adaptive global k-
Nearest Neighbors for the hierarchical classification of data
streams (Global kNN-hDS). Our proposal classifies hierarchical
data streams using a constrained memory buffer and a global
classification approach. We compare our method against a state-
of-the-art local kNN also tailored for streaming scenarios, and
results show that our method obtains competitive prediction
rates while being statistically faster.

I. INTRODUCTION

Classification is a recurring task that has been success-
fully applied to several domains, from biomedicine with the
enhancement of Computer-Aided Diagnosis [1], to politics,
with the detection of fake news, and even its impact in
presidential elections [2]. Because of the wide variety of
problems in which classification techniques can be used,
these techniques also need to deal with different kinds of
data and respond to them accordingly [3].

Classification problems can have two exclusive (non-
overlapping) classes (binary classification), several mutually
exclusive classes (multi-class classification), many poten-
tially simultaneous classes (multi-labeled classification), and,
finally, classes that are layered in a hierarchical structure (a
hierarchical classification).

This paper focuses on hierarchical classification, specifi-
cally on its intersection with another hot topic in machine
learning: data streams. Data stream classification regards a
data input characteristic, as instances are made available over
time for both testing and training [4]. This classification
task works with potentially unbounded data, which arrive
continuously, and needs to be processed constrained by lim-
ited computational resources. Besides, a data stream model
must be adaptive since the data is possibly non-stationary
(its probability distribution may change over time) [4].

Despite being an established research topic, the hierarchi-
cal classification task was nearly overlooked when consider-
ing the data stream scenario.

*Supported by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001.

1Programa de Pós-Graduação em Informática (PPGIa). Pontifı́cia Uni-
versidade Católica do Paraná. Curitiba, Brazil. {eduardo.tieppo,
jean.barddal, nievola}@ppgia.pucpr.br

2Instituto Federal do Paraná (IFPR), Pinhais, Brazil.
eduardo.tieppo@ifpr.edu.br

Therefore, our goal is to fill this gap by proposing
the Global kNN-hDS, a global hierarchical data stream
classification approach. Our proposal relies on k-Nearest
Neighbors [5], which is applied with smaller computational
resources usage when compared to the state-of-the-art local
approaches.

Considering the previously described context, the main
contributions of this study are two-fold:

• We propose the Global kNN-hDS, an adaptive global k-
Nearest Neighbors method for hierarchical data streams
classification. The method is adaptive, works with con-
strained time and memory, and is able to respond to
different contexts in data stream scenarios via window-
ing strategies.

• We reduce the dependence on distance computations in
the k-Nearest Neighbors method by applying a global
approach instead of a local one, being able to process
new instances performing fewer comparisons to find the
nearest neighbors.

The remainder of this paper is organized as follows.
Section II describes the background of both hierarchical
classification and data stream classification. Section III in-
troduces related works to our proposal, which is brought
forward in Section IV. Section V describes the experimental
setup and the results obtained. Finally, Section VI concludes
this paper and states envisioned future works.

II. THEORETICAL BACKGROUND

This section provides definitions of both hierarchical and
data stream classification tasks to allow a proper understand-
ing of our proposal.

A. Hierarchical Classification

In hierarchical classification, class labels are organized
in a hierarchically structured class taxonomy. Problems that
fit in these scenarios have data organized with correlated
parent and child class labels, such as music genres, news
categories, and animal species. Thus, methods assign not one
but a set (path) of related labels to an instance. Hierarchical
classification problems and algorithms can be categorized
accordingly to their data structure, label cardinality, and label
depth [6]:

• The class taxonomy may be modeled using a Tree
or a Directed Acyclic Graph (DAG) representation,
according to how many parent nodes the same node
has.

• Instances of a given problem can have only one single
path of labels (SPL) associated with them or multiple

paths of labels (MPL). Thereby, methods can also de-
cide between performing a single path prediction (SPP)
or a multiple path prediction (MPP) depending on the
problem characteristics.

• Methods can perform a mandatory (MLNP) or a non-
mandatory (NMLNP) leaf-node prediction, depending
on whether the problem supports partial depth labeling
(PD) or actual classes of the problem are represented
only in the leaf nodes with full depth labeling (FD).

Furthermore, a hierarchical classifier must be able to
handle the class hierarchy in its algorithm. Fig. 1 illustrates
different kinds of approaches.

In the local classifier per node (LCN) approach, one binary
classifier per class handles each class in the hierarchy (except
the root node). In the local classifier per parent node (LCPN)
approach, one multi-class classifier per class (except on the
leaf nodes) predicts between its child nodes. In the local
classifier per level (LCL) approach, one multi-class classifier
per level predicts between all nodes at the same level. Finally,
in the global classifier (GC) approach, one single multi-class
classifier is built to handle all classes using the hierarchy
information.

Here, it is essential to highlight that a global approach
is usually smaller in computational resources than a local
approach since it deploys a single model in contrast to
multiple models in the local approaches [6]. Fig. 2 illustrates
this difference in two kNN methods using a local classifier
approach (LCPN, in this case) and a global classifier (GC)
approach.

Note that a kNN using a local approach (Fig. 2, kNN -
LCPN) comprises one classifier at each level in the hierarchy
to choose between its child nodes using sub-datasets at each
step. The kNN-LCPN placed in the root node performs one

BA

Root

B1 B2A1 A2

BA

Root

B1 B2A1 A2

BA

Root

B1 B2A1 A2

BA

Root

B1 B2A1 A2

(LCN) (LCPN)

(LCL) (GC)

Fig. 1. Hierarchical classification approaches (circles represent classes and
dashed squares enclose classes to be predicted by a classifier) (Adapted from
[6]).

BA

Root

B1 B2A1 A2

BA

Root

B1 B2A1 A2

(kNN - LCPN) (kNN - GC)

#100 #100 #100 #100 #100 #100 #100 #100

400

200 400

Fig. 2. Illustrative comparison between hierarchical classification ap-
proaches. While kNN-LCPN needs to compare instances at each level in
the hierarchy, the kNN-GC performs only one comparison for the whole
tree.

comparison using 400 instances to predict A or B. After that,
another kNN-LCPN placed in the B node (the predicted one
in the last step) repeats the process with its child nodes,
performing another comparison with another 200 instances.

In contrast, a global approach kNN (Fig. 2, kNN - GC)
performs only one comparison for the whole tree using the
400 instances available. It is important to note that this
difference is dependent on the depth of the tree and tends to
be even larger in deeper hierarchies.

B. Data Stream Classification

Data stream classification differs from traditional classifi-
cation because data becomes available over time, and thus,
models must be updated accordingly. Furthermore, classifiers
tailored for learning from data streams must assume that
the data is potentially unbounded. Due to the temporal and
unbounded traits of data streams, several constraints are
imposed on data stream classifiers [4]:

• Single-pass: each instance must be processed just once
and cannot be reused;

• Bounded memory: learners must be able to work with
a limited amount of memory. If memory consumption
increases over time, they will be unable to process
streams that are larger than the available memory. In
practice, there is no problem with buffering instances
and relaxing the previous constraint, yet, increases in
memory consumption are forbidden;

• Limited time: the amount of time used to process an in-
stance must be restrained. Otherwise, arriving instances
will be buffered and put in jeopardy the aforementioned
constraints;

• Readiness: methods must be ready to predict at any
time, using all the data seen before to build the best
model possible at that time.

Fig. 3 depicts an overview of how data stream classi-
fication takes place given the aforementioned constraints.
The input data is obtained from the data stream (a), used
for testing (b), and, only after that, for training to update
the model (c). This is an iterative process, as input data is
continuously arriving. The single-pass processing is achieved
by discarding each instance after it has been processed. The
constraints concerning limited resources can be achieved by

Input data

Model
(test)

Learning
(train)

Data stream

Buffer

(a)

(b)

(c)

Fig. 3. Illustrative scheme of one possible method for data stream
classification. An input data is obtained from the data stream (a), tested
(b), incorporated into the model (c), and discarded (or optionally buffered
for a short time); then, the cycle starts again.

setting upper bounds on (c). The readiness is represented in
(b), as model predictions can be requested at any time.

In data stream classification, the relationship between
predictive and target features may change over time, giving
rise to a phenomenon named concept drift [7]. Thus, classi-
fication models should be able to detect and adapt to these
drifts. As a result, data stream classifiers are often coupled
with techniques that allow them to either (i) detect that a drift
occurred, thus allowing a model reset, or (ii) continuously
adapt the model as new data becomes available, usually via
windows that reflect most recent data [8].

Regarding validation, data stream classification methods
are usually assessed using the prequential assessing method,
an interleaved test-then-train strategy, where each instance
is used to test the model (predicting and using evaluation
metrics) before it is used for training and updating the model
[8].

For more information on data stream mining, the interested
reader is referred to [9], [10].

III. RELATED WORKS

In the work [6], the authors presented a comprehensive
analysis of how hierarchical classification methods previ-
ously reported in the literature performed when compared
to non-hierarchical approaches (flat methods).

The analysis comprised 31 methods and depicted that
in 90% of the experiments, hierarchical classifiers achieved
superior results than flat methods in batch learning, while
data stream mining is not mentioned.

On the other hand, recent surveys on data stream classi-
fication do not even mention hierarchical classification [9],
[11].

Recently, studies published across different research areas
proposed methods improperly associated with the hierar-
chical classification of data streams. For instance, studies
have proposed methods regarding hierarchical classification
of data streams, but either (i) use a batch configuration for
training using the entire dataset, or (ii) do not consider
any changes in the data distribution [12]–[16]. In other
words, those methods are actually hierarchical classification

methods in which the data source was a stream, but it is
assumed to be stationary, and models are not updated.

An exception is the work of [17], in which the authors
proposed an incremental method for the hierarchical clas-
sification of data streams and obtained competitive results
compared to established methods in both areas. Their method
is based on the traditional k-Nearest Neighbors (kNN) tech-
nique [5], represents the data hierarchically, and classifies
new data using a top-down strategy within the hierarchy.
The proposed algorithm is described as SPP, NMLNP, uses
a local approach (LCPN), and a memory buffer on nodes
to forget instances. After a predetermined number of initial
instances used for training (burnout window), the stream is
processed on an instance basis, thus following a prequential
protocol.

It is noteworthy that kNN has also been applied in other
hierarchical classification proposals, usually following a local
approach (LCN or LCPN) [6], [18]. Likewise, the kNN
method has also been used in data stream classification.
Therefore, the traditional algorithm needs to be adapted to
work with the time and memory constraints by, for example,
forgetting older instances as the stream progresses [19]–[22].

The previously cited method proposed in [17] successfully
merged both areas (data stream classification and hierarchical
classification) but presents limitations in the data stream
classification scenario since the computational cost for classi-
fying new instances is dependent on the number of instances
that the model stores.

In this work, we reduce this dependence by applying
a global approach instead of a local one, processing new
instances performing fewer comparisons to find the nearest
neighbors. As mentioned above, the global kNN is more
complex but smaller in computational resources than a local
kNN since it represents a single global model against many
possible local ones [6]. The next section details our proposal.

IV. THE ADAPTIVE GLOBAL K-NEAREST NEIGHBORS
FOR HIERARCHICAL DATA STREAM CLASSIFICATION

Our proposal, hereafter referred to as Global k-Nearest
Neighbors for Hierarchical Data Streams (Global kNN-hDS),
is an adaptive method for the hierarchical classification of
data streams based on the traditional k-Nearest Neighbors
(kNN) technique [5].

The method performs single path predictions (SPP) and
mandatory leaf-node predictions (MLNP) and uses a global
classification (GC) approach. Global kNN-hDS processes
new instances with less computational efforts when com-
pared to local approaches.

The global approach is achieved by selecting the kNN of
an instance and comparing the labels for each level, picking
those instances with the most frequent label for that level.
Next, the process is repeated for the next level of the label
path until it reaches a leaf node.

Fig. 4 illustrates this process with label paths extracted
from an instrument dataset using k = 7.

The “Chordophone” label is chosen in the first level
because it is the most frequent between the nearest neighbors,

then five label paths remain. In the second level, “Arco” is
the most frequent label and three label paths remain. The
process is repeated at the third level, resulting in the label
path “Chordophone.Arco.Violin” for that given instance.

The proposed method is also adaptive since it uses a
sliding window as a mechanism to forget older data. The
method implements the window through a memory buffer
at each leaf node in the tree. Thus, the method inherently
responds to concept drifts.

Fig. 5 shows the algorithm of the proposed adaptive global
k-Nearest Neighbors method for hierarchical classification of
data streams (Global kNN-hDS).

We assume that we are inside the prequential loop; thus,
the algorithm receives an instance as input, in addition to the
number of nearest neighbors and the buffer size.

From lines 1 to 7, we obtain all the instances temporarily
stored in all the descendant nodes of the root node. In lines
8-10, we calculate the Euclidean distance between the new
instance and the data stored at the tree (the possible nearest
neighbors obtained in the previous step). Thus, we obtain the
k-nearest neighbors and their labels by ordering the possible
nearest neighbors by the Euclidean distance (lines 11-12).

In line 13, the model predicts the label path by choosing
the label returned by the function mostFrequentInLevel() (as
previously described in Fig. 4).

Next, we complete the prequential method by incorporat-
ing the new data into the original dataset using its correct
label (line 14).

In lines 15-17, we test whether the number of instances in
each node exceeds the stipulated buffer size. If so, we apply
a sliding window strategy by forgetting the older instances
of that node, performing the proposed adaptive learning, and
assuring that the method can work with a constrained and
constant memory amount.

Chordophone
Chordophone
Aerophone
Chordophone
Chordophone
Chordophone
Aerophone

Pizzicato
Arco
Wood
Pizzicato
Arco
Arco
Wood

Guitar
Violin
Flute
Guitar
Violin
Cello
Flute

Chordophone
Chordophone
Chordophone
Chordophone
Chordophone

Pizzicato
Arco
Pizzicato
Arco
Arco

Guitar
Violin
Guitar
Violin
Cello

Chordophone
Chordophone
Chordophone

Arco
Arco
Arco

Violin
Violin
Cello

>
>
>
>
>
>
>

>
>
>
>
>
>
>

>
>
>
>
>

>
>
>
>
>

>
>
>

>
>
>

(Level 1)

(Level 2)

(Level 3)

Fig. 4. Global approach illustrated in an instrument dataset using k = 7
on the kNN. The most frequent label in each level is chosen, and the other
label paths are discarded. The process repeats until it reaches a leaf node.

Algorithm
Global kNN-hDS - Adaptive global k-Nearest Neighbors
for hierarchical classification of data streams

Input
k: number of nearest neighbors
buffer_size: maximum number of instances to be stored in each node
instance: a hierarchically labeled instance

for child_node in tree.descendants do
if child_node.data then

for target_data in child_node.data do
targets_list.append(current_node.id,target_data);

for target in targets_list do
target.append(euclideanDistance(new_data,target));

targets_list = sorted(targets_list, key=euclidean_distance);
knn = targets_list[0:k];
predicted_labels = mostFrequentInLevel(knn.labels);
correct_node.data.append(new_data);
if (len(correct_node.data) > buffer_size then

correct_node.data.pop(0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

end
end

end

end

end

Fig. 5. Global kNN-hDS - Adaptive global k-Nearest Neighbors for
hierarchical classification of data streams

V. ANALYSIS

This section defines the experimental protocol, comprising
the description of the datasets, evaluation protocol, and the
results obtained during a comparison with related work.

A. Experimental protocol

We used 16 hierarchically labeled datasets obtained from
the literature described in Table I.

We pre-processed HAR and Insects dataset variants to cre-
ate a label hierarchy (pre-existing but not explicit). The FMA
(Free Music Archive) dataset was pre-processed to include
only instances with full depth labeling (FD) and single paths
of labels (SPL). These datasets contain different features,
instances, and domains, thus allowing the assessment of how
our proposal behaves in different scenarios.

During the experiments, classifiers were assessed in terms
of hierarchical F-measure [27]. Like traditional classification
metrics, the hierarchical F-Measure (hF) relies on hierarchi-
cal precision and recall components, but instances are asso-
ciated with a path of labels, and the entire path is evaluated.
The hierarchical F-Measure is depicted in Equation 1, while
its precision (hP) and recall (hR) components are described
in Equations 2 and 3, respectively. In both precision and
recall metrics, P̂i is the set of labels predicted for the i-th
instance, and T̂i is its corresponding ground-truth label set.

hF =
2× hP × hR

hP + hR
(1)

TABLE I
DATASETS USED IN THE EXPERIMENT.

Dataset # of
Instances

of
Features

of
Classes Reference

Entomology 21,722 33 14 [17]
FMA 10,761 518 109 [23]
HAR 10,299 561 6 [24], [25]
Ichthyology 22,444 15 15 [17]
Insects (i-bal) 57,018 33 6 [26]
Insects (i-imb) 452,044 33 6 [26]
Insects (a-bal) 52,848 33 6 [26]
Insects (a-imb) 355,275 33 6 [26]
Insects (i-g-bal) 24,15 33 6 [26]
Insects (i-g-imb) 143,323 33 6 [26]
Insects (i-a-r-bal) 79,986 33 6 [26]
Insects (i-a-r-imb) 452,044 33 6 [26]
Insects (i-r-bal) 79,986 33 6 [26]
Insects (i-r-imb) 452,044 33 6 [26]
Insects (o-o-c) 905,145 33 24 [26]
Instruments 9,419 30 31 [17]

hP =

∑
i

∣∣∣P̂i

⋂
T̂i

∣∣∣∑
i

∣∣∣P̂i

∣∣∣ (2)

hR =

∑
i

∣∣∣P̂i

⋂
T̂i

∣∣∣∑
i

∣∣∣T̂i

∣∣∣ (3)

Furthermore, we measured the time performance by calcu-
lating the number of instances that are processed per second.

We compared our proposal (Global kNN-hDS) against the
local kNN variant proposed in [17], hereafter referred to
as Local kNN-hDS. We set up both methods with identical
parameters (k = 7, buffer size = 100) in all performed tests.

Finally, the results obtained by both methods were as-
sessed using Wilcoxon hypothesis tests [28] with a 95%
confidence level according to the protocol provided in [29].

The experiments in this paper were performed
using Python 3.7. The proposed script containing
the Global kNN-hDS method and datasets used
in the experiments are available for download at
http://www.ppgia.pucpr.br/˜jean.barddal/
datasets/Global_kNN-hDS.zip.

B. Discussion

Table II shows the hierarchical F-measure obtained by both
classifiers in the datasets (greater values highlighted in bold).

The Global kNN-hDS method obtained better hF rates
in 12 out of the 16 datasets. However, hF values are
similar across local and global approaches, such that the
average difference between them is 0.03%, favoring the
global proposal.

Despite the improvements, the Wilcoxon signed-rank test
showed that there is no statistical difference between hF
rates obtained by the methods (W = 40.5, p-value =
0.2671).

TABLE II
HIERARCHICAL F-MEASURE (hF) RATES OBTAINED DURING

EXPERIMENTS.

hF (%)

Dataset
Local

kNN-hDS [17]
Global

kNN-hDS

Entomology 57.84 57.81
FMA 24.28 24.73
HAR 96.39 96.26
Ichthyology 45.93 46.01
Insects (i-bal) 84.22 84.27
Insects (i-imb) 82.08 82.17
Insects (a-bal) 83.28 83.33
Insects (a-imb) 81.38 81.46
Insects (i-g-bal) 83.52 83.56
Insects (i-g-imb) 87.71 87.71
Insects (i-a-r-bal) 81.81 81.86
Insects (i-a-r-imb) 81.42 81.50
Insects (i-r-bal) 83.62 83.65
Insects (i-r-imb) 81.38 81.47
Insects (o-o-c) 64.01 63.70
Instruments 73.59 73.41

Avg. hF (%) 74.53 74.56

In terms of processing time, Table III compares the
average number of instances per second processed by both
methods in each dataset (greater values highlighted in bold).

The Global kNN-hDS method was able to process more
instances per second across all datasets, with an average rate
of 90.31 instances against 34.80 of the local approach.

We highlight that this value varies according to the number
of features in the dataset (it needs more computational effort
to calculate distances between two instances, such as in
the HAR dataset with 561 features) and the number of
classes (more comparisons due to the number of instances in
memory buffers of each class node, such as in FMA dataset,
with 109 classes).

TABLE III
INSTANCES PER SECOND RATES OBTAINED DURING EXPERIMENTS.

Instances per second

Dataset
Local

kNN-hDS [17]
Global

kNN-hDS

Entomology 34.88 54.82
FMA 1.47 1.78
HAR 6.53 8.64
Ichthyology 54.01 105.32
Insects (i-bal) 39.03 118.30
Insects (i-imb) 40.37 117.28
Insects (a-bal) 40.57 117.71
Insects (a-imb) 40.25 114.12
Insects (i-g-bal) 44.71 131.11
Insects (i-g-imb) 41.51 121.43
Insects (i-a-r-bal) 40.95 119.61
Insects (i-a-r-imb) 40.54 118.43
Insects (i-r-bal) 40.76 119.52
Insects (i-r-imb) 40.40 118.73
Insects (o-o-c) 20.34 34.76
Instruments 30.43 43.39

Avg. inst/sec 34.80 90.31

http://www.ppgia.pucpr.br/~jean.barddal/datasets/Global_kNN-hDS.zip
http://www.ppgia.pucpr.br/~jean.barddal/datasets/Global_kNN-hDS.zip

On average, the global method was able to process 2.60
times more instances than the local approach. The FMA,
HAR, Instruments, and Entomology datasets (in that order)
resulted in the smallest differences in the rate of instances
per second obtained by both methods, equal to 1.38 times. In
contrast, in most insect datasets (except for “out-of-control”),
the global approach was able to process 2.92 times more
instances than the local approach.

To conclude our analysis, we performed a one-tailed
Wilcoxon test to verify whether the rates of instances pro-
cessed by the global approach are greater than the rates of
the local method. The test indicated a statistical difference
between instances per second rates obtained by both methods
(W = 136.0, p-value = 0.0002) and showed that our
proposal is significantly faster when compared to the local
approach.

VI. CONCLUSION

This paper proposed a global and adaptive approach for
the hierarchical classification of data streams based on k-
Nearest Neighbors. We compared our proposal with a local
kNN variant, and results showed that it is statistically faster
while achieving similar prediction rates.

Furthermore, as a byproduct of this research, a Python
implementation of our method and the datasets used in the
experiments are made publicly available. We believe these
are essential aspects to serve as baselines for future studies
on the hierarchical classification of data streams.

In future works, we are interested in analyzing the be-
havior of the method with other window types. Also, we
intend to study new models to decrease the processing
time in kNN distance computations and new strategies to
forget data considering the application of traditional drift
detectors to increase the responsiveness to changes in the
data distribution.

REFERENCES

[1] N. I. Yassin, S. Omran, E. M. El Houby, and H. Allam, “Machine
learning techniques for breast cancer computer aided diagnosis using
different image modalities: A systematic review,” Computer methods
and programs in biomedicine, vol. 156, pp. 25–45, 2018.

[2] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection
on social media: A data mining perspective,” ACM SIGKDD Explo-
rations Newsletter, vol. 19, no. 1, pp. 22–36, 2017.

[3] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing and Mining
(IJDWM), vol. 3, no. 3, pp. 1–13, 2007.

[4] J. Gama, Knowledge discovery from data streams. Chapman and
Hall/CRC, 2010.

[5] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[6] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification
across different application domains,” Data Mining and Knowledge
Discovery, vol. 22, no. 1-2, pp. 31–72, 2011.

[7] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol.
106, no. 2, p. 58, 2004.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[9] S. Ramı́rez-Gallego, B. Krawczyk, S. Garcı́a, M. Woźniak, and F. Her-
rera, “A survey on data preprocessing for data stream mining: Current
status and future directions,” Neurocomputing, vol. 239, pp. 39–57,
2017.

[10] A. Cano, “A survey on graphic processing unit computing for large-
scale data mining,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 8, no. 1, p. e1232, 2018.

[11] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou et al.,
“Open challenges for data stream mining research,” ACM SIGKDD
explorations newsletter, vol. 16, no. 1, pp. 1–10, 2014.

[12] Y. Wang, Z. Gong, and J. Guo, “Hierarchical classification of business
information on the web using incremental learning,” in 2009 IEEE
International Conference on e-Business Engineering. IEEE, 2009,
pp. 303–309.

[13] H. Purohit, A. Hampton, S. Bhatt, V. L. Shalin, A. P. Sheth, and J. M.
Flach, “Identifying seekers and suppliers in social media communities
to support crisis coordination,” Computer Supported Cooperative Work
(CSCW), vol. 23, no. 4-6, pp. 513–545, 2014.

[14] S. A. Khowaja, A. G. Prabono, F. Setiawan, B. N. Yahya, and S.-L.
Lee, “Contextual activity based healthcare internet of things, services,
and people (hiotsp): An architectural framework for healthcare mon-
itoring using wearable sensors,” Computer Networks, vol. 145, pp.
190–206, 2018.

[15] L. Cao, Y. Wang, B. Zhang, Q. Jin, and A. V. Vasilakos, “Gchar:
An efficient group-based context—aware human activity recognition
on smartphone,” Journal of Parallel and Distributed Computing, vol.
118, pp. 67–80, 2018.

[16] K.-Y. Huang, C.-H. Wu, Q.-B. Hong, M.-H. Su, and Y.-H. Chen,
“Speech emotion recognition using deep neural network considering
verbal and nonverbal speech sounds,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5866–5870.

[17] A. R. S. Parmezan, V. M. Souza, and G. E. Batista, “Towards
hierarchical classification of data streams,” in Iberoamerican Congress
on Pattern Recognition. Springer, 2018, pp. 314–322.

[18] M. Aly, “Survey on multiclass classification methods,” Neural Netw,
vol. 19, pp. 1–9, 2005.

[19] M. Khan, Q. Ding, and W. Perrizo, “k-nearest neighbor classification
on spatial data streams using p-trees,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2002, pp. 517–528.

[20] P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling fast lazy learning
for data streams,” in 2011 IEEE 11th International Conference on
Data Mining. IEEE, 2011, pp. 932–941.

[21] J. P. Barddal, H. M. Gomes, J. Granatyr, A. de Souza Britto, and F. En-
embreck, “Overcoming feature drifts via dynamic feature weighted k-
nearest neighbor learning,” in 2016 23rd International Conference on
Pattern Recognition (ICPR). IEEE, 2016, pp. 2186–2191.

[22] J. P. Barddal, H. Murilo Gomes, F. Enembreck, B. Pfahringer,
and A. Bifet, “On dynamic feature weighting for feature drifting
data streams,” in Machine Learning and Knowledge Discovery in
Databases, P. Frasconi, N. Landwehr, G. Manco, and J. Vreeken, Eds.
Cham: Springer International Publishing, 2016, pp. 129–144.

[23] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “Fma: A
dataset for music analysis,” arXiv preprint arXiv:1612.01840, 2016.

[24] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A
public domain dataset for human activity recognition using smart-
phones.” in Esann, 2013.

[25] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[26] V. M. A. Souza, D. M. Reis, A. G. Maletzke, and G. E. A. P. A.
Batista, “Challenges in benchmarking stream learning algorithms with
real-world data,” Data Mining and Knowledge Discovery, pp. 1–54,
2020.

[27] S. Kiritchenko and F. Famili, “Functional annotation of genes using
hierarchical text categorization,” Proceedings of BioLink SIG, ISMB,
01 2005.

[28] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[29] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–
30, 2006.

http://archive.ics.uci.edu/ml

	Introduction
	Theoretical background
	Hierarchical Classification
	Data Stream Classification

	Related works
	The Adaptive Global k-Nearest Neighbors for Hierarchical Data Stream Classification
	Analysis
	Experimental protocol
	Discussion

	Conclusion
	References

