
SNCStream: A Social Network-based Data Stream
Clustering Algorithm

Jean Paul Barddal
Programa de Pós-Graduação

em Informática
Pontifícia Universidade

Católica do Paraná
Curitiba, Brazil

jean.barddal@ppgia.pucpr.br

Heitor Murilo Gomes
Programa de Pós-Graduação

em Informática
Pontifícia Universidade

Católica do Paraná
Curitiba, Brazil

hmgomes@ppgia.pucpr.br

Fabrício Enembreck
Programa de Pós-Graduação

em Informática
Pontifícia Universidade

Católica do Paraná
Curitiba, Brazil

fabricio@ppgia.pucpr.br

ABSTRACT
Data Stream Clustering is an active area of research which
requires efficient algorithms capable of finding and updating
clusters incrementally. On top of that, due to the inherent
evolving nature of data streams, it is expected that these
algorithms manage to quickly adapt to both concept drifts
and the appearance and disappearance of clusters. Never-
theless, many of the developed two-step algorithms are only
capable of finding hyper-spherical clusters and are highly
dependant on parametrization. In this paper we introduce
SNCStream, a one-step online clustering algorithm based
on Social Networks Theory, which uses homophily to find
non-hyper-spherical clusters. Our empirical studies show
that SNCStream is able to surpass density-based algorithms
in cluster quality and requires feasible amount of resources
(time and memory) when compared to other algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; H.2.8 [Database Man-
agement]: Database Applications—Data Mining

General Terms
Algorithms

Keywords
Data Stream Clustering, Concept Drift, Novelty Detection,
Social Network Analysis

1. INTRODUCTION
Let S be a data stream providing instances ~xi intermit-

tently every t units of time, where ~xi is a d-dimensional
data object arriving at a timestamp i. It is assumed that S
is unbounded, i.e. |S| → ∞, thus, it is not feasible to store

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04 ...$15.00
http://dx.doi.org/10.1145/2695664.2695674.

all instances in memory before processing. This characteris-
tic enforce algorithms to either process data in limited size
chunks or to incrementally process instances. Firstly, every
instance ~xi must be processed before an instance ~xi+1 be-
comes available, otherwise instances start to accumulate and
the algorithm may have to discard them. Secondly, there is
an inherent temporal aspect associated with a stream pro-
cess, where the data distribution may change over time,
namely concept drift. Therefore, algorithms must also be
able to detect and adapt to drifts, updating the algorithm’s
model. Also, ideally, clustering algorithms must be able to
detect the appearance and disappearance of clusters, which
may also happen with time, thus, discerning between seeds
of new clusters and noisy data.

Generally, data stream clustering can be described as the
act of grouping streaming data in meaningful clusters [5]. As
any other task in data streams, clustering must be performed
within limited time, memory and deal with data stream pe-
culiarities, i.e. concept drift and clusters appearance and
disappearance, namely concept evolution. Apart from the
time and memory space constraints, two requirements are
long-awaited for data stream clustering algorithms: no as-
sumptions about the number of clusters and the discovery of
clusters with arbitrary shapes, i.e. not only hyper-spherical.

In this paper we introduce SNCStream, a one-step online
clustering algorithm capable of finding non-hyper-spherical
clusters. SNCStream, in opposition to other data stream
clustering algorithms, uses only one step processing to find
clusters by using a social network generation and evolution
model, which is based on homophily.

The remainder of this work is organized as follows: Sec-
tion 2 surveys related work for data stream clustering. Sec-
tion 3 presents basic concepts of social networks. In Sec-
tion 4 we introduce the SNCStream algorithm. In Section
5, we present an empirical evaluation and discuss about
parametrization sensibility. Section 6 concludes this paper
and presents future work.

2. RELATED WORK
A variety of data stream clustering algorithms were de-

veloped in last years aiming two-step clustering (online and
offline steps), such as CluStream [2], ClusTree [18] and Den-
Stream [8].

During the online step, algorithms incrementally update
specific data structures to deal with the evolving nature of
data streams without compromising time and memory con-

935

straints. One of the most widely used data structure is fea-
ture vectors, a triplet CF = 〈LS, SS,N〉, where LS stands
for the sum of the objects summarized, SS is the squared
sum of these objects and N is the amount of objects [21].
Feature vectors are able to represent hyper-spherical clusters
incrementally due to its incremental and additive properties.
A feature vector CFj can be incremented by an instance
~xi as follows: LSj ← LSj + ~xi, SSj ← SSj + (~xi)

2 and
Nj ← Nj + 1. As for the additive property, two feature vec-
tors CFi and CFj can be merged in a third CFl as follows:
LSl ← LSi + LSj , SSl ← SSi + SSj and Nl ← Ni + Nj .
In addition, in order to provide recently retrieved instances
higher importance in clustering, a variety of window mod-
els featuring sliding, damped and landmark were developed
[21].

On the offline step, conventional clustering algorithms such
as k-means [20] and DBSCAN [12] are feasible, since they do
not handle the massive amount of instances, treating only
these summarizing structures such as CF s.

In the next sections we present some literature algorithms
based on online and offline steps.

2.1 CluStream
The CluStream adopts the landmark windowing technique,

thus, treats the stream based on data chunks of size H
[2]. CluStream assumes a number q of CF s that should
be maintained at any instant of the stream. Initial CF s are
computed with an amount of instances N , also determined
by the user. Instances obtained from the stream should be
merged with existing CF s, or initiate new CF s. CluStream
calculates an Euclidean distance for ~xi to each CF , then, de-
termines whether the distance to the closest CFj is less or
equal to its radius. In the positive case, ~xi is merged within
CFj . Conversely, ~xi starts a new CFk. If the amount of
CF s is above q, the two closest CF s are merged. When
H is reached, all q CF s are recalculated with the next N
instances obtained from the stream.

On the offline step, CluStream uses a modification of the
k-means or DBSCAN algorithms, in order to obtain clusters
based on the q CF s computed during the online step. In
this paper, we compare the DBSCAN version, since k-means
is highly dependant of the user-given parameter of ground-
truth clusters K.

2.2 ClusTree
ClusTree [18] maintains CF s in a R-Tree [14]. R-Trees are

data structures similar to B-Trees, yet, are used for multi-
dimensional access, in this case, CF s. ClusTree creates a
hierarchy of CF s in different granularity levels. Depend-
ing on how much time is available to process each instance,
ClusTree performs a search in the R-Tree in order to find the
most similar CF . Accordingly to user-given thresholds, it is
determined whether this instance should or not be merged.
In the negative case, a new CF is then created and added
to the R-Tree. ClusTree also copes with noisy data by using
outlier-buffers, which are CF s with low density.

In order to assign more importance to recent instances,
ClusTree adopts an exponential decay function to assign
weights for CF s. Since the R-Tree maintains in its nodes
feature vectors, its components N , SS and LS are updated
accordingly to an exponential decay function.

On the offline step, algorithms such as k-means and DB-
SCAN are used in order to detect clusters, where CF s cen-

ters are treated as centroids. As in CluStream, the compared
version of ClusTree uses DBSCAN at the offline step to find
clusters.

2.3 DenStream
DenStream is based on the DBSCAN algorithm, which

guarantees the union of the ε-neighborhood of clusters which
covers all dense areas of the attribute space. Therefore, a
core object is an object which ε-neighborhood has at least ψ
neighbors and a dense area is the union of all ε-neighborhoods
of all core objects. DenStream defines the concept of a core-
micro-cluster in a time instant t, which is a temporal exten-
sion to a CF , as CMC(w, c, r) to a group of near instances
~xi, ~xi+1, . . . , ~xn where w is its weight, c its center and r its
radius.

In evolutionary data streams, the role of clusters and
noisy data may exchange, therefore, micro-clusters are incre-
mented and updated also during concept drifts and evolu-
tions. Thus, there are two types of micro-clusters: potential
micro-cluster and outlier micro-cluster. A potential micro-
cluster is similar to a core-micro-cluster, with the difference
on the weight restriction, where w ≥ βψ and 0 ≤ β ≤ 1 is a
threshold parameter to detect outliers. At the other hand,
an outlier micro-cluster occurs when w < βψ.

The online step of DenStream has the objective of main-
taining a group of potential and outlier micro-clusters. At
the arrival of each instance ~xi, DenStream tries to aggregate
~xi to the closest potential micro-cluster accordingly to the
weight restrictions. In the negative case, the same occurs
for outlier micro-clusters. If ~xi was aggregated in an outlier
micro-cluster, the weight restriction is checked to determine
whether this micro-cluster should be promoted to a poten-
tial micro-cluster. Conversely, if ~xi was not merged with any
micro-cluster at all, it starts a new outlier micro-cluster.

The offline step of DenStream uses the DBSCAN algo-
rithm to find clusters based on potential micro-clusters com-
puted during the online step.

3. SOCIAL NETWORKS
Social Networks Theory has been applied in many research

fields, from computer science to sociology, due to its formal
description of structural variables based on graph theory.

Even though Social Network Analysis focus on subjective
topics such as an individual behavior in society, its building
blocks (nodes and edges) are represented computationally
as a graph G = (V,E,W) where V is the set of nodes, E the
set of edges between nodes and W is the set of tuples which
associates to each edge in E a weight (Euclidian distance).

Different Social Network models were developed over the
years, with the objective of modeling both generation and
evolution of networks, where we emphasize: Random [11],
Small-World [23] and Scale-free [4].

The Random generation model is based on the hypothesis
that the existence of a connection between a pair of nodes
is given by a probability p.

The Small-world model incorporates attributes of both
random and regular networks. Consequently, this topology
presents a high clustering coefficient, inherited from the reg-
ular networks, and a small average path length, as random
networks [23].

The objective of the Scale-free model is to represent the
dynamics of real networks, where connections between nodes
can be replaced with time such as the World Wide Web

936

and Cellular Networks [4]. Thus, authors in [4] developed
generation and evolution elements. A Scale–free network
starts with a diminished network size n. For every time
unit t, a new node is added to the network establishing k
connections with already existing nodes. Also, on the Scale-
free model, when choosing the nodes which this new node
will establish its connections, it is assumed a probability∏

(di) = di∑
j dj

, where d represents the degree of a node i.

As a consequence of the preferential attachment process,
Scale–free networks are “dominated” by a few vertices de-
nominated hubs [10]. Thus, Scale–free network degree dis-

tribution follows the distribution p(k) ∼ k(−λ) where p(k) is
the probability of a random node being attached to k other
nodes and {λ ∈ R | 2 ≤ λ ≤ 3} for many real networks
[4]. In addition, at each time unit t, besides the addition of
new nodes, a rewiring process exists. The rewiring compo-
nent is based on the homophily definition [22], where nodes
tend to eradicate connections with dissimilar nodes, replac-
ing them by new connections with more similar ones with
a probability θ. Since homophily tends to establish connec-
tions between similar nodes, this process is useful for the
task of clustering.

4. SNCSTREAM
Social Network Clusterer Stream (SNCStream) is based

on the hypothesis that intra-cluster data are related due to
diminished dissimilarity and inter-cluster data are not re-
lated, due to higher dissimilarity. SNCStream models this
problem as a social network, where the set of nodes V are
instances or micro-clusters, edges E represent connections
between these nodes, and subgroups in this network rep-
resent clusters. In order to keep track of clusters during
the stream, SNCStream uses an adaptation of the Scale-free
model rewiring process where nodes rewirings are based on
homophily.

Initially, SNCStream starts with an empty network G =
(V,E,W), which is constructed with instances ~xi obtained
from S. For each instance ~xi, SNCStream finds its k closest
instances by computing Euclidian distances, where k is a
user-given parameter.

Afterwards, ~xi is added to V and edges and weights with
the k nearest neighbors are added to its correspondent sets
E and W accordingly to Algorithm 1. After ~xi addition to
the network, all nodes vi ∈ V perform rewirings based on ho-
mophily, thus vi replaces edges with higher dissimilarities w
with edges with closest neighbors, which account for lower
dissimilarity. Every vi then computes Euclidian distances
with all of its 2-hop neighbors. A 2-hop neighborhood is
assumed since potential closest nodes are likely to be neigh-
bors of the current neighbors. This 2-hop neighborhood is
an approximation in order to prevent distance computation
between all nodes, which would be computationally costly,
thus, may fail in isolated scenarios. With the results of these
Euclidian distances, vi replaces edges with the most dissim-
ilar instances with some similar ones, yet, maintaining its
degree ki.

Due to the rewiring process, communities of instances
tend to appear naturally since the amount of intra-clusters
edges between similar instances grows and of dissimilar in-
stances (between clusters), shrinks. Figure 1 presents the
evolution of a network as instances arrive, where one can see
that the rewiring procedure enlarges the amount of intra-

Algorithm 1: Insertion Procedure Pseudocode.

input : a node (instance or CF) vi, the network G and the
amount of connections each micro-cluster will
establish at its insertion in the network k.

1 neighbors ← the k closest microclusters in V to vi;
2 V ← V ∪ {vi};
3 foreach pi ∈ neighbors do
4 newEdge ← 〈vi, pi〉;
5 E ← E ∪ {newEdge};
6 W ←W ∪ {〈newEdge, d(vi, pi)〉};

/* rewiring procedure */
7 foreach pi ∈ V do
8 ki ← degree(pi);
9 newNeighbors ← the ki closest nodes in V to pi using a

2-hop neighborhood;
10 Remove all edges connecting pi from E and its

correspondent weights from W ;
11 foreach pj ∈ newNeighbors do

/* Establishes new edges */
12 newEdge ← 〈pi, pj〉;
13 E ← E ∪ {newEdge};
14 W ←W ∪ {〈newEdge, d(pi, pj)〉};

cluster edges and diminishes the amount of inter-clusters
connections. This procedure is repeated until, in Figure 1n,
two clusters emerge.

Nonetheless, this method alone, besides composing and
keeping track of clusters in online fashion, is not practical
for data streams due to the massive amount of data. Conse-
quently, SNCStream encompasses a window N which deter-
mines the initial amount of instances to be treated before the
network of instances is replaced by a potential micro-cluster
network. Potential micro-clusters and outlier micro-clusters
are defined as in [8].

When the network size |V | reaches N , all instances are
transformed into potential micro-clusters and an outlier micro-
cluster buffer omc is initialized. At this point, instances
~xi retrieved from S are treated by SNCStream similarly to
DenStream. Firstly, SNCStream tries to merge ~xi into an
existent micro-cluster. SNCStream computes an Euclidian
distance with each vj ∈ V , determining the closest micro-
cluster to ~xi: cp. If the radius of cp + ~xi is below ε, ~xi is
added to cp, otherwise, SNCStream repeats the above steps
for the outlier micro-clusters in an outlier buffer omc. In
the negative case, i.e. ~xi is not merged within any exist-
ing micro-clusters, ~xi initiates a new outlier micro-cluster in
omc.

When an outlier micro-cluster oc is promoted to a poten-
tial micro-cluster (weight of oc is greater or equal βψ), it
is removed from omc and inserted in the network G using
Algorithm 1.

In order to provide recently retrieved data higher weights,
SNCStream uses a damped window model, where all CF s’
components LS, SS and N are updated accordingly to an
exponential decay function.

As in DenStream [8], the weight w(vi) decreases exponen-
tially over time using a function f(t) = 2−α×t, where α > 0
is the decaying factor. When the weight w(vi) of a micro-
cluster vi is below βψ, it is removed from the network (if vi
is a potential micro-cluster), or from omc (if vi is an outlier
micro-cluster). In the first case, all neighbors vj of vi are
allowed to rewire in order to maintain their degree kj after
the vi’s removal. This early rewiring procedure is performed

937

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 1: Example of network evolution obtained from the RBF2 experiment from instances 1 through 18.

Algorithm 2: Rewiring for Removal Procedure Pseu-
docode.
input : a node vj to rewire, a node vi which is about to be

removed and the network G.
/* vj is rewired to its kj closest nodes, with the

exception of vi, using a 2-hop neighborhood. */
1 kj ← degree(vj);
2 newNeighbors ← the kj closest micro-clusters in V to vj

with the exception of vi in a 2-hop neighborhood;
3 Remove all edges connecting vj from E and its

correspondent weights from W ;
4 Repeat steps 11 through 14 from Algorithm 1.

Figure 2: Snapshot of the network taken from the banana
dataset toy problem.

in order to keep the network with a higher amount of edges.
Algorithm 2 presents the pseudocode for the early removal
rewiring procedure.

Again, as a result of the rewiring process, each CF will
establish connections with the most similar CF s in G, thus,
clusters are formed at the online step without any batch
clustering algorithm such as k-means or DBSCAN. When a
user requests for cluster retrieval, SNCStream returns the
subgroups of the network. Also, since clusters are formed
with no hyper-spherical constraints, SNCStream is able to
find non-hyper-spherical clusters such as presented in Figure
2 where one can see two non-hyper-spherical clusters.

One could argue about the effects of the parameter k on
the generation and evolution of the network, therefore, in

Experiment Instances Attributes Reference
Airlines 539,383 8 [16]
Electricity 45,312 8 [15]
Forest Covertype 581,012 54 [17]
KDD’98 95,412 56 [18]
KDD’99 4,898,431 38 [3]

Table 1: Real datasets used for empirical evaluation.

Experiment
CMM

CluStream ClusTree DenStream SNCStream
RBF2 0.84 0.91 0.81 0.98
RBF5 0.67 0.85 0.73 0.98
RBF10 0.55 0.88 0.71 0.97
RBF∗

2 0.83 0.91 0.82 0.97
RBF∗

5 0.67 0.85 0.71 0.94
RBF∗

10 0.57 0.85 0.70 0.89
Airlines 0.67 0.76 0.47 0.96
Electricity 0.41 0.44 0.49 0.96
Forest Covertype 0.50 0.49 0.69 0.90
KDD’98 0.37 0.37 0.37 0.38
KDD’99 0.50 0.49 0.69 0.90

Average Ranking 3.45 2.36 3.18 1.00

Table 2: CMM (Cluster Mapping Measure) obtained from
experiments.

Section 5.2, we discuss about the parameter sensitivity and
show that k = 4 is an appropriate value for tested domains.

5. EMPIRICAL EVALUATION
In order to compare SNCStream with other algorithms, we

developed a validation environment using both real and syn-
thetic data. All algorithms are compared in terms of CMM,
CPU Time and RAM-Hours. CMM is an external clustering
evaluation metric that accounts for non-associated, misasso-
ciated instances and noisy data inclusion [19]. Also, CMM
considers recently retrieved instances with more weight than
older ones by using an exponential decay function inside
evaluation windows. RAM-Hours is a measure of RAM us-
age, where each Gigabyte of RAM dispended for one hour

938

Experiment
CPU Time (s)

CluStream ClusTree DenStream SNCStream
RBF2 288.54 175.69 660.37 694.95
RBF5 295.45 147.39 629.6 373.2
RBF10 440.37 187.99 959.03 438.57
RBF∗

2 300.13 185.62 645.02 661.12
RBF∗

5 297.84 150.29 598.98 317.09
RBF∗

10 441.99 192.93 902.51 422.15
Airlines 278.55 137.89 246.84 167.68
Electricity 33.32 13.31 47.55 51.85
Forest Covertype 598.54 327.59 418.67 300.17
KDD’98 1783.24 1261.51 1104.74 1188.12
KDD’99 908.58 265.72 7944.89 2450.1

Average Ranking 2.72 1.27 3.27 2.72

Table 3: CPU Time (s) obtained from experiments.

Experiment
RAM-Hours

CluStream ClusTree DenStream SNCStream

RBF2 1.70× 10−6 7.60×10−5 1.82×10−5 3.54×10−5

RBF5 2.10× 10−6 6.65×10−5 1.96×10−5 1.51×10−5

RBF10 4.05× 10−6 9.84×10−5 3.97×10−5 1.59×10−5

RBF∗
2 1.76× 10−6 5.93×10−5 1.67×10−5 3.71×10−5

RBF∗
5 2.12× 10−6 5.74×10−5 1.87×10−5 1.34×10−5

RBF∗
10 4.06× 10−6 1.01×10−4 3.60×10−5 1.65×10−5

Airlines 1.75× 10−6 6.38×10−5 7.23×10−6 6.18×10−6

Electricity 2.65× 10−7 6.84×10−6 1.60×10−6 1.71×10−6

Forest Covertype 5.50× 10−6 2.22×10−4 1.75×10−5 1.21×10−5

KDD’98 3.14× 10−4 1.06×10−2 9.87×10−4 1.57× 10−4

KDD’99 1.74× 10−5 2.21×10−4 6.88×10−4 8.82×10−5

Average Ranking 1.09 3.91 2.82 2.18

Table 4: RAM-Hours obtained from experiments.

equals on RAM-Hour [6]. All experiments were performed
on a Intel Xeon CPU E5649 @ 2.53GHz ×8 based computer
running CentOS with 16GB of memory.

All algorithms were parametrized accordingly to their orig-
inal papers. CluStream parameters are: Horizon H = 1, 000
and q = 1, 000 [3]. ClusTree parameters are: a Horizon
H = 1, 000 and a maximum tree height = 8 [18]. DenStream
parameters are: ψ = 1, N = 1, 000, λ = 0.25, ε = 0.02 e
β = 0.2 [8]. All of the above cited algorithms run a DB-
SCAN at the offline step, using the following parameters:
ψ = 1, N = 1, 000, λ = 0.25, ε = 0.02, β = 0.2 and a of-
fline multiplier η = 2. Finally, SNCStream parameters are:
ψ = 1, N = 100, λ = 0.25, ε = 0.02, β = 0.2 and k = 4.
The initial window sizeN differs from other algorithms since
SNCStream finds its initial micro-clusters based on N while
others do not.

Synthetic data streams were generated using the Radial
Basis Function (RBF) generator available at MOA frame-
work [7]. The RBF generator creates a user-given amount
of drifting centroids, which are defined by a label, center,
weight and standard deviation accordingly to a Gaussian
distribution. Another possibility of the RBF generator is
the appearance or disappearance of clusters.

For this evaluation we created 6 synthetic data streams
with 1,000,000 instances varying the dimensionality of in-
stances d = {2, 5, 10}, namely RBF2, RBF5 and RBF10

where the amount of clusters is fixed in 5; and RBF∗
2, RBF∗

5

and RBF∗
10 for experiments where the amount of clusters

vary in the [2; 8] domain.
Jutting synthetic data streams, algorithms were evalu-

ated using real datasets where clusters are known to be
non-hyper-spherical. These datasets are commonly used for
supervised learning and we assume classes as ground-truth
clusters. These datasets are listed at Table 1. All experi-

ments were evaluated every 1,000 instances.

5.1 Discussion
Since all evaluated algorithms are deterministic, its re-

sults do not fulfill the requirements for parametric hypoth-
esis testing. Therefore, a combination of non-parametric
test was used combining Friedman’s [13] and Bonferroni-
Dunn’s post-hoc 1 × N pivotal test [1], using a confidence
level α = 0.05. The combination of these two tests are due
its corrections provided to diminish type II errors [9].

Table 2 presents results for CMM, where one can see that
SNCStream outperformed all algorithms for the tested ex-
periments. In order to determine whether there is signif-
icant statistical difference between algorithms’ CMM, we
used Friedman’s test. Thus, we were able to determine that
there is statistical difference between algorithms in terms
of CMM. Therefore, we used Bonferroni-Dunn’s 1×N test
pivoting SNCStream and determined that it is superior to
all others with a 95% confidence level.

In Table 3 one can see results for CPU Time in seconds
where ClusTree shows better average results due to its tree
structure, where comparisons are made in O(logn). Nev-
ertheless, Friedman’s test pointed that there is statistical
difference between algorithms and Bonferroni-Dunn’s pro-
cedure determined that ClusTree outperforms DenStream
but not CluStream and SNCStream.

Finally, Table 4 presents results for RAM-Hours, where
one can see that CluStream presents better results, except
on the KDD’98 experiment. Again, by using Friedman’s test
and Bonferroni-Dunn’s procedure, we were able to determine
that CluStream outperforms ClusTree and DenStream in
terms of RAM-Hours, yet, not SNCStream.

5.2 Parameter Sensibility
SNCStream reckons on one parameter to find clusters: the

amount of connections established at the arrival of each in-
stance, k; while other parameters are used only to form
micro-clusters. Therefore, to determine whether different
values of k affect results directly, we ran all experiments
varying k in the [1; 10] interval. Table 5 presents results ob-
tained for SNCStream varying the value of k, where one can
see that SNCStream presents good results within the whole
range, yet, k = 4 has better average results. In order to
determine whether k = 4 is superior that other configura-
tions, we ran the same combination of non-parametric tests.
Thus, we were able to determine that k = 4 has no statisti-
cal difference between other values of k, with the exception
where k = 1. Based on these results, we assume k = 4 as
default value, although optimization for other domains can
be achieved by varying this parameter.

6. CONCLUSION
In this paper we presented the SNCStream, a one-step

data stream clustering algorithm capable of finding non-
hyper-spherical clusters. SNCStream uses a scale-free-like
homophily procedure to track the evolution of clusters dur-
ing data streams. SNCStream was evaluated along with
other clustering algorithms in a variety of real and synthetic
datasets, which showed that SNCStream achieved higher
CMM while maintaining suitable CPU Time and RAM-
Hours when compared to other algorithms with a lower amo-
unt of parameters. In addition, SNCStream is not bounded
to a user-given amount of ground-truth clusters to be found.

939

Experiment
CMM

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
RBF2 0.96 0.96 0.98 0.98 0.97 0.96 0.96 0.95 0.94 0.94
RBF5 0.93 0.95 0.97 0.98 0.97 0.95 0.94 0.90 0.86 0.81
RBF10 0.93 0.95 0.97 0.97 0.95 0.93 0.90 0.87 0.82 0.75
RBF∗

2 0.95 0.95 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.90
RBF∗

5 0.92 0.94 0.96 0.94 0.92 0.89 0.85 0.80 0.75 0.70
RBF∗

10 0.91 0.91 0.92 0.89 0.85 0.81 0.76 0.70 0.66 0.63
Airlines 0.77 0.89 0.94 0.96 0.97 0.97 0.98 0.98 0.98 0.98
Electricity 0.69 0.85 0.93 0.96 0.96 0.97 0.98 0.98 0.99 0.99
Forest Covertype 0.53 0.75 0.84 0.89 0.91 0.93 0.94 0.94 0.95 0.96
KDD’98 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
KDD’99 0.80 0.82 0.88 0.90 0.92 0.94 0.94 0.94 0.95 0.95

Average Ranking 7.54 6.00 4.18 4.09 4.82 4.82 5.18 5.81 6.36 6.18

Table 5: CMM obtained by varying k for SNCStream algorithm.

In future works we plan on verifying the impact of other
distance metrics for higher dimensionality data, perform a
further discussing regarding other parameters and network
aspects such as topology and centrality metrics. Also, we ex-
pect to use archive programming to optimize distance com-
putation and develop a specific graph implementation to re-
duce processing time and memory usage. In addition, fur-
ther discussion with other evaluation metrics and algorithms
is also envisioned.

7. REFERENCES
[1] H. Abdi. Bonferroni and Sidak corrections for multiple

comparisons. In N. J. Salkind, editor, Encyclopedia of
Measurement and Statistics, pages 103–107. Sage,
Thousand Oaks, CA, 2007.

[2] C. C. Aggarwal. A framework for diagnosing changes
in evolving data streams. In Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’03, pages 575–586,
New York, NY, USA, 2003. ACM.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for clustering evolving data streams. In
Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03, pages
81–92. VLDB Endowment, 2003.

[4] R. Albert and A. L. Barabási. Statistical mechanics of
complex networks. In Reviews of Modern Physics,
pages 139–148. The American Physical Society,
January 2002.

[5] A. Amini and T. Y. Wah. On density-based data
streams clustering algorithms: A survey. Journal of
Computer Science and Technology, 29(1):116–141,
2014.

[6] A. Bifet. Adaptive Stream Mining: Pattern Learning
and Mining from Evolving Data Streams, volume 207
of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2010.

[7] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer.
Moa: Massive online analysis. The Journal of Machine
Learning Research, 11:1601–1604, 2010.

[8] F. Cao, M. Ester, W. Qian, and A. Zhou.
Density-based clustering over an evolving data stream
with noise. In SDM, pages 328–339, 2006.

[9] G. Corder and D. Foreman. Nonparametric Statistics
for Non-Statisticians: A Step-by-Step Approach.
Wiley, 2011.

[10] C. D. Correa, T. Crnovrsanin, and K.-L. Ma. Visual
reasoning about social networks using centrality
sensitivity. IEEE Transactions on Visualization and

Computer Graphics, 18(1):106–120, 2012.

[11] P. Erdos and A. Rényi. On the evolution of random
graphs. In Publication of the Mathematical Institute of
the Hungarian Academy of Sciences, pages 17–61,
1960.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In E. Simoudis,
J. Han, and U. M. Fayyad, editors, KDD, pages
226–231. AAAI Press, 1996.

[13] M. Friedman. The Use of Ranks to Avoid the
Assumption of Normality Implicit in the Analysis of
Variance. Journal of the American Statistical
Association, 32(200):675–701, Dec. 1937.

[14] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’84, pages 47–57, New York, NY,
USA, 1984. ACM.

[15] M. Harries and N. S. Wales. Splice-2 comparative
evaluation: Electricity pricing, 1999.

[16] E. Ikonomovska, J. Gama, B. Zenko, and S. Dzeroski.
Speeding-up hoeffding-based regression trees with
options. In ICML, pages 537–544, 2011.

[17] P. Kosina and J. a. Gama. Very fast decision rules for
multi-class problems. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC
’12, pages 795–800, New York, NY, USA, 2012. ACM.

[18] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The
clustree: Indexing micro-clusters for anytime stream
mining. Knowl. Inf. Syst., 29(2):249–272, Nov. 2011.

[19] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet,
G. Holmes, and B. Pfahringer. An effective evaluation
measure for clustering on evolving data streams. In
Proc. of the 17th ACM Conference on Knowledge
Discovery and Data Mining (SIGKDD 2011), San
Diego, CA, USA, pages 868–876, New York, NY,
USA, 2011. ACM.

[20] S. Lloyd. Least squares quantization in pcm. IEEE
Trans. Inf. Theor., 28(2):129–137, Sept. 1982.

[21] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka,
A. C. P. L. F. d. Carvalho, and J. a. Gama. Data
stream clustering: A survey. ACM Comput. Surv.,
46(1):13:1–13:31, July 2013.

[22] M. Van Steen. Graph Theory and Complex Networks:
An Introduction. Maarten Van Steen, 2010.

[23] D. J. Watts and S. H. Strogatz. Collective dynamics of
small-world networks. Nature, 393(6684):440–442,
June 1998.

940

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

