
Contents lists available at ScienceDirect
Information Systems

Information Systems 62 (2016) 60–73
http://d
0306-43

E-m
hmgom
fabricio
jean-pa
journal homepage: www.elsevier.com/locate/infosys
SNCStreamþ: Extending a high quality true anytime data
stream clustering algorithm

Jean Paul Barddal a, Heitor Murilo Gomes a, Fabrício Enembreck a,
Jean-Paul Barthès b

a Programa de Pós-Graduação em Informática – Pontifícia Universidade Católica do Paraná, Brazil
b UTC - Université de Technologie de Compiègne, France
a r t i c l e i n f o

Article history:
Received 27 May 2015
Received in revised form
29 February 2016
Accepted 17 June 2016

Recommended by Laks Lakshmanan

algorithm, allowing incremental clustering updates. In this paper we present the Social
þ þ þ
Available online 25 June 2016

Keywords:
Data stream clustering
Unsupervised learning
Social networks theory
x.doi.org/10.1016/j.is.2016.06.007
79/& 2016 Elsevier Ltd. All rights reserved.

ail addresses: jean.barddal@ppgia.pucpr.br (J
es@ppgia.pucpr.br (H.M. Gomes),
@ppgia.pucpr.br (F. Enembreck),
ul.barthes@utc.fr (J.-P. Barthès).
a b s t r a c t

Data Stream Clustering is an active area of research which requires efficient algorithms
capable of finding and updating clusters incrementally as data arrives. On top of that, due
to the inherent evolving nature of data streams, it is expected that algorithms undergo
both concept drifts and evolutions, which must be taken into account by the clustering

Network Clusterer Stream (SNCStream). SNCStream tackles the data stream cluster-
ing problem as a network formation and evolution problem, where instances and micro-
clusters form clusters based on homophily. Our proposal has its parameters analyzed and
it is evaluated in a broad set of problems against literature baselines. Results show that
SNCStreamþ achieves superior clustering quality (CMM), and feasible processing time and
memory space usage when compared to the original SNCStream and other proposals of
the literature.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the latest years, the interest in mining massive,
potentially unbounded, data instances which arrive at
rapidly rates, namely data streams, has grown substantially.
In this context, a variety of inductive learning techniques
were developed to extract useful knowledge from data
streams and achieved concrete results in both supervised
[1,2] and unsupervised learning [3–6] approaches.

Even though a lot of effort has been devoted to the
development of supervised machine learning, specially
classification, many real world problems do not include
labelled data. Thus, for many applications it is only suitable
.P. Barddal),
to apply unsupervised techniques, such as clustering. In
these scenarios, processing data in high velocity and
extracting useful knowledge from these sequences of data
is a current research challenge achievable solely with
unsupervised approaches. Examples of data stream clus-
tering applications are: consumer click streams, telephone
usage flows, multimedia data mining [7,8], computer
networks intrusion detection [3], XML and HTML struc-
tures mining [9] and sensor network data clustering [10].

Data stream clustering can be described as the act of
grouping streaming data in meaningful clusters [8]. As any
other task in data streams, clustering must be performed
within limited resources (time and memory) and deal with
data stream peculiarities, i.e. changes in data distribution,
namely concept drift [11]; and clusters appearance and
disappearance, namely concept evolution [12]. Apart from
the time and memory constraints, two requirements are
long-awaited for data stream clustering algorithms:

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.06.007
http://dx.doi.org/10.1016/j.is.2016.06.007
http://dx.doi.org/10.1016/j.is.2016.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.007&domain=pdf
mailto:jean.barddal@ppgia.pucpr.br
mailto:hmgomes@ppgia.pucpr.br
mailto:fabricio@ppgia.pucpr.br
mailto:jean-paul.barthes@utc.fr
http://dx.doi.org/10.1016/j.is.2016.06.007

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 61
(i) there must be no assumptions about the number of
clusters to be found and (ii) algorithms must be able to
discover clusters with arbitrary shapes, since most of real
data streams are irregular, i.e. do not follow a Gaussian
distribution [4,5].

In [4] we presented the Social Network Clusterer
Stream (SNCStream), a density and social network-based
algorithm. SNCStream differs from other algorithms pre-
sented in the literature since it does not perform an offline
step, i.e. it does not need batch processing for finding final
clusters. Furthermore, SNCStream does not need the
information of the amount of clusters to be found and is
able to discover non hyper-spherical clusters.

In this paper we present SNCStreamþ , an extension to our
prior proposal SNCStream. SNCStreamþ inherits the density
and social network characteristics of the original SNCStream.
Although the algorithm asymptotical computational com-
plexity remains the same when compared to the original
SNCStream, our proposal is more efficient since it executes in
decreased complexity in the average case. We present
empirical results comparing SNCStreamþ to SNCStream and
other literature baselines. These experiments evaluate three
important aspects of data stream clustering: memory usage,
processing time and clustering quality (CMM).

Additionally, in this paper we also contribute with
several studies over important aspects of SNCStreamþ:

� Vertices (instances and micro-clusters) are added to
SNCStream's network performing ω connections
(edges). Intuitively, if ω is assigned with a large value
(e.g. 15), the network may become so dense that only
one cluster will be found. Conversely, if ω is assigned
with a small value (e.g. 1), the network will become
sparse and a high amount of clusters will be found. In
this paper we investigate the impact of parameter ω in
terms of clustering quality, and suggest a default value.

� SNCStream verifies micro-clusters' weights accordingly
to a clean-up window size Tp, originally used in [5]. If
they take too long to perform such verifications, micro-
clusters that do not represent the current stream con-
cept will join the network and jeopardize the quality of
final clusters. Conversely, performing this verification
too often may jeopardize algorithms' processing time. In
this paper, we verify the impact of Tp in terms of
clustering quality and processing time.

� The original SNCStream uses Euclidian distance to
compute dissimilarities between instances and micro-
clusters. In [4], we observed that SNCStream's clustering
quality decays in high dimensional streams [13]. In this
paper, we empirically verify that the original SNCStream
falls in the vastitude of high dimensional streams, and
show how it is possible to extend it to decrease the
impact of the curse of dimensionality [3] by adopting
specific distance metrics.

This paper is divided as follows: Section 2 presents the
problem of data stream clustering and surveys related
work. Section 3 presents our proposal, the Social Network
Clusterer Streamþ , detailing its phases and presenting a
time and space complexity analysis. Later, Section 4 pre-
sents the empirical evaluation of SNCStreamþ , discussing
parameter sensitivity and highlighting the empirical eva-
luation against literature baselines, where our proposal
shows high clustering quality and feasible processing time
and memory space usage. Finally, Section 5 concludes
this paper.
2. Data stream clustering

Let S denote a data stream providing instances x!i

rapidly and intermittently, where x!i is a d-dimensional
data object which arrives at a timestamp ti. Extracting
useful knowledge from data streams is a challenge. Most
traditional data mining techniques assume that data is
generated by a stationary probability distribution and
stored in a finite database. Thus, it is feasible to iteratively
process data using a batch algorithm [14]. This same
approach cannot be used for data stream mining since a
stream S is assumed to provide a large, potentially infinite,
amount of instances. More important, the stream's data
distribution may change over time. Therefore, it is neither
practical nor possible to store all instances in memory
before processing. As a consequence, instances should be
processed right after their arrival (single-pass processing)
or in limited size chunks [8].

Developing data stream clustering algorithms which
are fast use a limited amount of memory and present high
acuity is an effervescent research area [8]. The task of data
stream clustering can be described as the act of grouping
streaming data in a set of meaningful clusters K¼
fk1; k2;…; kKg [15]. The principle behind most of clustering
techniques is that instances within a cluster are more
similar to each other when compared to instances in other
clusters [16].

Data stream clustering algorithms must be capable of
dealing with concept drifts and evolutions. Concept drifts
occur whenever the data distribution changes [11], while
concept evolution refers to the appearance or disappearance
of clusters [12]. Ideally, clustering algorithms must: (i) detect
concept drifts and adapt its clusters accordingly; (ii) detect
concept evolutions and create/delete clusters automatically;
(iii) discern between seeds of new clusters and noisy data;
and finally (iv) not rely on a multitude of parameters.

This last characteristic is very important in a data
stream processing context, since optimal values for para-
meters very often depend on the incoming data. Thus, if a
drift or evolution happens the parameters' values become
outdated. A canonical example is the parameter that
defines the ground-truth number of clusters to be found K.
Any algorithm that demands a predefined value of K is
unable to cope with concept evolutions.

A variety of data stream clustering algorithms were
developed in the last years. Most of these algorithms
[3,5,17,6] process incoming instances intercalating online
and offline steps.

During the online step, algorithms incrementally
update specific data structures aiming at dealing with the

J.P. Barddal et al. / Information Systems 62 (2016) 60–7362
evolving nature of data streams, and time/space con-
straints. To represent instances and comply to time and
memory space restrictions, the feature vector data struc-
ture if often used. A feature vector is a triple vector
CF ¼ 〈LS; SS;N〉, where LS stands for the sum of the objects
summarized, SS is the squared sum of these objects and N
is the amount of objects [8]. Feature vectors are able to
represent hyper-spherical clusters incrementally due to its
incremental and additive properties. Basically, an instance
x!i can increment a feature vector CFj as follows:
LSj’LSjþ x!i, SSj’SSjþ x!2

i and Nj’Njþ1. As for the
additive property, two feature vectors CFi and CFj can be
merged in a third CFl as follows: LSl’LSiþLSj, SSl’SSiþSSj
and Nl’NiþNj.

In order to assign more importance to recently retrieved
instances, various models featuring sliding, damped and
landmark windows were developed [8].

During the offline step, traditional batch clustering
algorithms, such as k-means [18] and DBSCAN [19] are
applied. These algorithms must be adapted to work with
data structures that summarizes many instances, for
example, feature vectors.

In the next sections we briefly survey the state-of-the-
art algorithms for data stream clustering.

2.1. CluStream

During the online step, CluStream uses a landmark
windowing technique, whose size is determined by a
parameter Horizon (H), determining disjoint chunks that
keep statistical summaries in different granularity levels
for both spatial and temporal aspects of the stream [3].
CluStream assumes a number q of feature vectors that
should be maintained at any instant of the stream. These q
feature vectors are initially computed with a amount of
instances N , given by the user. Instances obtained from
the stream should be merged within existing CFs or should
initiate new ones according to user-given thresholds.

During the offline step, the original CluStream uses an
adaptation of the k-means algorithm [18] in order to
obtain clusters based on the q feature vectors computed
during the online step. Hence, one of the major limitations
of CluStream is its inability to find non-hyper-spherical
clusters and the fact that it depends on a parameter of
clusters to be found K.

2.2. ClusTree

ClusTree [6] maintains feature vectors in a R-Tree [20].
ClusTree hypothesis is the creation of a hierarchy of feature
vectors at different granularity levels. Accordingly to user-
given thresholds, it is determined whether an instance should
be merged with an existing feature vector. In the negative
case, a new feature vector is created and added to the R-Tree.
ClusTree copes with noisy data by using outlier-buffers.

During the offline step, algorithms such as k-means [18]
and DBSCAN [19] are used to find final clusters, where
feature vectors' centers are treated as centroids.
2.3. DenStream

DenStream [5] extends the DBSCAN [19] algorithm and
presents the definition of core micro-cluster. A core object
is an object which ϵ-neighborhood has at least ψ neigh-
bors and a dense area is the union of all ϵ-neighborhoods
of all core objects. Therefore, a core micro-cluster is a CF in
a time instant t is defined as CMCðw; c; r; tc; tuÞ to a group of
near instances x!i; x

!
iþ1;…; x!n where w stands for its

weight, c its center, r its radius, tc the timestamp of its
creation and the timestamp of its last update (increment
or addition) tu; where wZψ , rrϵ, f ð�Þ is a exponential
decay function and dð�; �Þ is an Euclidean distance.

Core micro-clusters are classified based on their
weights w: if wZβψ , it is a potential micro-cluster (PMC),
otherwise, it is considered an outlier micro-cluster (OMC).

DenStream's online step aims on maintaining a group
of potential micro-clusters stored in main memory since it
assumes that most part of the instances x!i retrieved from
S belong to clusters; and outlier micro-clusters, which are
stored in secondary memory. Arriving instances x!i are
merged within an existing micro-cluster if the resulting
micro-cluster's radius rðPMCpþ x!iÞ is below ϵ. If this
merge occurs with an outlier micro-cluster, and its weight
w is above βψ , it is removed from secondary memory and
promoted to a potential micro-cluster.

All micro-clusters weights' decay exponentially. As
stated earlier, in case the weight w of a micro-cluster is
below βψ it should be treated as an outlier micro-cluster.
Verifying all potential micro-clusters weights according to
the arrival of each instance x!i can be too computationally
costly, therefore, DenStream encompasses a periodic ver-
ification performed based on a clean-up window size Tp.
Eq. (1) presents the computation of the clean-up window
size Tp presented in [5]:

Tp ¼ 1
λ
log

βψ
βψ�1

� �
ð1Þ

Finally, the offline step of DenStream applies a variation
of DBSCAN to find final cluster upon the potential micro-
clusters maintained during the online step, thus ignoring
outlier micro-clusters.

2.4. HAStream

To automatically detect clusters of different densities,
HAStream [17] performs a hierarchical density-based clus-
tering that automatically and independently adapts its den-
sity thresholds accordingly to the arriving streaming data.

During the online step of HAStream all retrieved
instances are processed using any feature vector model
such as presented in CluStream [3], ClusTree [6] or Den-
Stream [5].

On the offline step, HAStream generates the final clus-
ters using a hierarchical density-based clustering. Since
returning every possible hierarchical cluster forces the
evaluator to define the correct amount of clusters,
HAStream uses the concept of cluster stability [17]. In
order to obtain the final clusters, HAStream computes a
flat clustering by maximizing cluster stabilities in branches
of the dendrogram.

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 63
2.5. Social network clusterer stream

The Social Network Clusterer Stream (SNCStream) [4] is
a one-step data stream clustering algorithm capable of
finding non-hyper-spherical clusters. SNCStream models
the stream clustering problem as the evolution of a social
network. SNCStream's hypothesis is that vertices (instances
or micro-clusters), by constantly performing local rewirings
of its edges, split the network in subgroups, the so desired
clusters. The network G¼ ðV; E;WÞ starts empty, and an
instance x!i retrieved from the stream is inserted in the
network as a vertex and edges are created connecting x!i to
its ω closest neighbors. However, the core of SNCStream is
the rewiring procedure. After x!i's addition to the network,
all other nodes viAV perform rewirings based on homo-
phily, thus, vi replaces edges with higher dissimilarities
with new edges with closest neighbors, which account for
lower dissimilarity. Due to the rewiring process, commu-
nities of instances appear naturally since the amount of
intra-clusters edges between similar instances grows and of
dissimilar instances (between clusters), shrinks.

After a initial window N , all existing instances in V are
converted into potential micro-clusters, enabling SNCStream
to summarize great amounts of data with decreased mem-
ory space by using potential and outlier micro-clusters data
structures. SNCStream adapts to both concept drifts and
evolutions by using a damped windowmodel, where micro-
clusters' weights decay as the stream progresses.

We refrain from detailing SNCStream's functioning
since the overall method is analogous to the one presented
in Section 3. Overall, SNCStream's asymptotic computa-
tional complexity is of OðVω2Þ (where V is the amount of
vertices currently in the network), a relatively high com-
putational cost when compared to the latter surveyed
algorithms, which are linear or logarithmic, however, not
prohibitive since ω is usually a small value (e.g. 4) and
V � 50 in a variety of domains [4].
3. The social network clusterer streamþ

One of the drawbacks of existing data stream clustering
algorithms is the existence of batch processing during the
offline step, which is responsible for finding clusters based
on statistical summaries computed during the online step.
Ideally, a data stream clustering algorithm must be able to
incrementally update not only its statistical summaries but
also its clusters, thus, eliminating the necessity of batch
processing upon clustering requests on offline steps. If no
batch processing is needed to find final clusters, then the
clustering algorithm is said to be anytime.

During the offline step, conventional batch clustering
techniques such as k-means [18] and DBSCAN [19] are
commonly used and rely on experts' knowledge, which
must set parameters accordingly to the stream's data
domain. In the k-means approach, besides being limited to
find hyper-spherical clusters, it is unfeasible to assume
that the user is an expert in the data domain, thus might
not be able to define correctly the amount of clusters to be
found upon every clustering request. Additionally, clusters
may appear and disappear as the stream progresses,
therefore, a very common implementation approach is to
inform k-means with the correct amount of clusters to be
found K at every offline step, a solution that departs from
most real-world scenarios.

Conversely, the major limitation of using DBSCAN on
the offline step is its amount of parameters and their
influence in final clusters. Small variations in density
parameters may jeopardize final clusters, finding a very
smaller (even none) or greater amount of clusters when
compared to the real ones. Again, two possibilities are
stated: (i) assume that the user is a domain expert and will
be able to define its parameters correctly or (ii) use opti-
mization algorithms to define suboptimal parameters for
each domain.

All the cited parametrization alternatives are undesir-
able and are impracticable in real data streams environ-
ments: assuming that the user knows the data domain is
unrealistic; informing k-means about the correct amount
of clusters distorts the clustering task goal; and the usage
of optimization algorithms may find optimal values for
certain chunks of the stream, yet, we cannot assume that
such values imply in good results for future chunks.
Therefore, it is long awaited that data stream clustering
algorithms become capable of finding clusters in entirely
unsupervised fashion, with (i) a smaller amount of para-
meters, while (ii) dealing with time and memory space
constraints, (iii) finding non-hyper-spherical clusters,
detecting and adapting to concept drifts and evolutions;
and (iv) discerning between the seeds of new clusters and
noisy data [3,15,5,14,6,8].

The rationale behind the Social Network Clusterer
Streamþ (SNCStreamþ) is that, micro-clusters, besides
being incrementally updated accordingly to the arrival of
instances from S, are also able to form clusters incre-
mentally, using a formation and evolution network
model. This network model is based on homophily,
where micro-clusters form clusters naturally during the
online step, eliminating the necessity of batch techniques
such as k-means and DBSCAN. Whenever a clustering
request occurs, SNCStreamþ returns its subgroups,
therefore, performs data stream clustering in true real-
time fashion.

The Social Network Clusterer Streamþ is based on the
hypothesis that data points within clusters are related
(connected) due to high similarity and points inter-clusters
are not, due to low similarity. SNCStreamþ models this
problem as a social network [21] represented as a graph
G¼ ðV; E;WÞ, where V represents the set of vertices
(instances or micro-clusters), E is the set of edges which
relate vertices in V; and W is the set is edges weights, it is,
distances between neighbor vertices. Additionally, groups
of connected vertices SDV of the network represent
clusters which form the final clustering K.

SNCStreamþ is divided in three major phases: Initial
Network Formation, Network Transformation and Network

J.P. Barddal et al. / Information Systems 62 (2016) 60–7364
Evolution. These phases are responsible for, respectively,
creating an initial network structure based on instances
retrieved from the data stream; transform this initial net-
work of instances in a network of micro-clusters; and
evolve the network with the arrival of further instances. We
emphasize that all the above phases are located at the
online step of the algorithm.

The following sections detail each of the phases
encompassed by SNCStreamþ .

3.1. Initial network construction

This phase aims on developing a network based on the
beginning of the stream. SNCStreamþ starts with an
empty network G¼ ðV ¼ ;; E ¼;;W ¼;Þ. Based on an
initial window size parameter N , instances x!i are
retrieved from the data stream S and inserted in the net-
work as vertices.

On the arrival of x!i, it is simply added to the vertex set
V and edges are built connecting x!i to the ω closest
neighbors (accordingly to a distance metric), where ω is a
user-given parameter. Newly created edges ei are then add
to the edge set E and its corresponding distances (weights)
are stored in W.

The insertion procedure guarantees that the last
inserted instance is connected to its ω closest instances,
however, the same may not be true for the other instances.
To exemplify such problem, we refer to Fig. 1, which
depicts the insertion of 4 vertices in a network, where one
can see that the vertex v1 is not connected to the closest ω
possible vertices (Fig. 1(d)) when assuming an Euclidian
distance.

Therefore, SNCStreamþ applies a rewiring procedure
based on homophily. Homophily occurs in real social
Fig. 1. Insertion process exa

Fig. 2. v1 rewiring procedure ex
networks where nodes replace its connections with time
based on similarity and affinity [21]. The rewiring proce-
dure adopted by SNCStreamþ promotes vertices to seek
the best connections possible, it is, maintaining edges with
the closest vertices possible while preserving its current
degree (degð�Þ), a trait which segments the network in
subnetworks (clusters). Rewiring is based on the hypoth-
esis that neighbors of a vertex vj tend to be neighbors of vi,
if vi is adjacent to vj. In another words, 2-hop neighbors
(neighbors of current neighbors) of a vertex vi are likely to
be neighbors of vi and therefore, are accounted for dis-
tance comparison.

To exemplify the rewiring procedure, Fig. 2 continues
the example from Fig. 1. SNCStream determines all of the
2-hop neighbors of v1, thus determining the closest ver-
tices when compared to the current neighbors (1-hop
neighbors). In Fig. 2(b) it occurs that dðv1; v4Þodðv1; v3Þ,
therefore, v1 replaces the connection with v3 by an edge
with v4, as seen in Fig. 2(c).

Finally, the rewiring procedure has an important fea-
ture: it segments the network in subnetworks (clusters).
Fig. 3 presents a complete example of network initial
construction, where two clusters emerge in Fig. 3(r) due to
the rewiring process.

3.2. Network transformation

The insertion and rewiring procedures are capable of
finding clusters incrementally. However, they have a
strong limitation: the network grows indefinitely. This
prevents the algorithm to be scalable to data streams,
since it is impossible to store the whole data stream and
due to the growing amount of distance computations
needed at the arrival of each instance x!i retrieved from S.
mple assuming ω¼ 2.

ample, where degðv1Þ ¼ 2.

Fig. 3. Example of network initial construction where two clusters emerge due the rewiring process. Adapted from [4].

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 65
Therefore, SNCStreamþ adopts statistical summary struc-
tures to summarize a great amount of instances in
decreased memory space, and perform “forget” older data
to adapt to new concepts rapidly.

SNCStreamþ uses an initial window of size N to
retrieve the first instances from the stream. When the
amount of vertices in the network jVj reaches N , all ver-
tices viAV, which until this moment represented instan-
ces, are converted to potential micro-clusters with LS¼ x!i,
SS¼ x!2

i , N¼1 and tc ¼ tu ¼ ti.
Finally, an outlier micro-cluster buffer B is instantiated.

As in DenStream [5], this buffer is used to store micro-
clusters with weights below βψ , which do not participate
of the network nor affect final clustering.

3.3. Network evolution

After the transformation of the network into a micro-
clusters network, our proposal incrementally updates its
statistical summaries based on DenStream [5].

At the arrival of an instance x!i, SNCStream
þ deter-

mines the closest potential micro-cluster to x!i: PMCi.
Later, it verifies if the increment of x!i in PMCi results in a
micro-cluster which radius is below ϵ. If this occurs, x!i is
added to PMCi. Otherwise, this process is repeated for
outlier micro-clusters: SNCStreamþ

finds the closest out-
lier micro-cluster OMCi to x!i and they are merged if the
resulting radius of its increment is below ϵ.

If x!i incremented an outlier micro-cluster, SNCStreamþ

verifies whether if this OMC has become a PMC, i.e. its
weight is now above βψ . In the positive case, it is removed
from B and inserted in the network as in the first phase to
its ω closest neighbors and the homophily-based rewiring
procedure is performed.

As in DenStream, both potential and outlier micro-
clusters' weights decay over time accordingly to an expo-
nential decay function presented in Eq. (2), where
Δt ¼ ti�tu is the difference between the current time-
stamp and the instant of the last update of each core-
micro-cluster, N is the amount of instances summarized by
such micro-cluster and λ is the parameter for the expo-
nential function:

wðCMCiÞ ¼ 2N�λΔt ð2Þ
The last procedure in SNCStreamþ is the removal of
both potential and outlier micro-clusters. Firstly,
SNCStreamþ verifies whether the weights of each poten-
tial micro-cluster in V is below the minimum density
threshold βψ every Tp instances (Eq. (1)).

If this occurs with PMCi, all of its neighbors PMCj are
allowed to rewire with the restriction to ignore PMCi since
it will be removed from the network. After the rewiring of
all PMCi's neighbors, PMCi is removed from the network.

After the verification occurs for potential micro-clus-
ters, the same procedure is repeated for outlier micro-
clusters located in B. In this last case, the process is sim-
pler, where all outlier micro-clusters with weight below an
threshold ξ (Eq. (3)) are removed from B. For details on the
computation of ξ, the reader is referred to [5]:

ξ¼ 2ti � tc þTp �1

2�λTp �1
ð3Þ

3.4. Algorithm speedup, time and space complexity analysis

SNCStream and SNCStreamþ core resides in the rewiring
procedure. However, this procedure is quite computation-
ally complex since a big amount of distance computations
occur on the arrival of each instance or insertion of a new
potential micro-cluster in the network. In order to speedup
SNCStream's performance, two assumptions are made:
(i) rewiring is likely to compute distances between vertices
that were already computed earlier, and (ii) after the
rewiring of an arbitrary vertex vi, SNCStream performs a
linear access to the remaining vertices, however, vertices
that do not participate of vi's subgroup will perform
rewiring unnecessarily. Additionally, vertices with a large
distance in terms of hops are doubtfully affected by rewir-
ings, thus, performing linear access is a naive approach that
must be refined.

3.4.1. Distances memoization
Computing distances between data points can be pro-

blematic, specially in high dimensional spaces. Due to the
rewiring procedure, distances between vertices are con-
stantly re-computed unnecessarily. To overcome this draw-
back, SNCStreamþ encompasses a memoization technique
[22] to store and reuse previously computed distances.

J.P. Barddal et al. / Information Systems 62 (2016) 60–7366
This memoization process consists in using a hash table
in the 〈key; value〉 to efficiently store and retrieve distances
between a pair of vertices vi and vj. The hash table key is
an unique representation of a distance between vi and vj,
such that their unique identifiers, i.e. i and j, are combined
into an unique integer using the Cantor Pairing function
[23]. In practice, the usage of Cantor pairing is optional
since most of current mainstream programming techni-
ques allow the usage of pair integers as key. In order to use
Cantor's function, we assume that io j, since πði; jÞaπðj; iÞ:

π i; jð Þ ¼ 〈i; j〉¼ 1
2
� iþ jð Þ � iþ jþ1ð Þþ j ð4Þ

Cantor's pairing function is reversible, therefore, based
on a natural number 〈i; j〉 it is possible to recover the ori-
ginal values of i and j. In order to perform such operation,
one must follow:

z¼ 〈i; j〉

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8zþ1

p �1
2

� �

t ¼w2þw
2

j¼ z�t

i¼w� j

With this function, SNCStreamþ is capable of storing
and reusing distances between pairs of vertices of the
network, since these are stored in a hashtable in the
〈πði; jÞ; dðvi; vjÞ〉 form, thus allowing quick distance recovery
without the need of recomputations.

Since every value present in this hash represents a
distance between a pair of vertices in the network, its size
is equal to the amount of edges in the network, therefore
impacting in an extra memory consumption in the OðjVj2Þ
order. Therefore, we highlight that whenever an edge
removal occurs in the network, its corresponding value is
removed from the memoization hash in order to free up
memory space.

3.4.2. Rewiring through dissipation
The original rewiring procedure performs linear access

to all existing vertices in the network, most of times,
unnecessarily. This occurs since most of the vertices in the
network are likely to be “far” from the location of the last
inserted vertex or if it was inserted in a different subnet-
work. In Algorithm 1 we present an iterative version for
our faster rewiring procedure. This algorithm receives as
input two parameters: the last inserted vertex vi and the
entire network G.

Initially, two structures are initialized: rewired (a list of
already rewired vertices) and toRewire (a queue of vertices
that still must perform rewirings). While toRewirea;, a
slight modification to the earlier stated rewiring procedure
is performed with the head of the queue: vj. Firstly,
SNCStreamþ verifies if the newly chosen neighbors for vj
differ from its current neighbors. Newly chosen neighbors
are defined as the kj closest neighbors to vj when assuming
a 2-hop distance, which occurs in Oðω2Þ. If the current
neighbors differ from the new neighbors, all of vj's
neighbors, with the exception of vi and other already
rewired vertices are enqueued for rewiring.

Algorithm 1. Iterative optimized rewiring procedure.

Input the last added vertex vi and the network G¼ ðV; E;WÞ.
1
 rewired’∅;

2
 toRewire’adjðviÞ;

3
 while toRewirea∅ do

4
5
6
7

8
9

10
11
12
13
14
15
16
vj’dequeueFirstðtoRewireÞ;
currentNeighbors’adjðvjÞ;
kj’degðvjÞ;
newNeighbors’ the kj closest neighbors to vj assuming a
2� hop distance;
if currentNeighborsanewNeighbors then
Remove all edges connecting vj in E and its corresponding
weights in W;

foreach vkAnewNeighbors do
newEdge’new_edgeðvk ; vjÞ;
weight’dðvk; vjÞ;
E’E [fnewEdgeg;
W’W [fweightg;

66666664
toRewire’toRewire [ðadjðvjÞ�fvig�rewiredÞ;

666666666666666664
rewired’rewired [fvjg;

666666666666666666666666666666666664
If one assumes an unlikely condition that all nodes
always must perform rewirings, i.e. the condition
currentNeighborsanewNeighors is always satisfied, the
optimized rewiring procedure runs in OðVωÞ. Since the
difference between SNCStream and SNCStreamþ resides
in this optimized rewiring algorithm, we state that
SNCStream depends on OðVþωþVω2Þ, thus, its overall
complexity is OðVω2Þ, as the original SNCStream. As stated
earlier, this latter condition is unlikely to occur, therefore,
in the average case, this optimization does provide a
decreased computational time when compared to the
original rewiring procedure adopted by SNCStream [4].

Fig. 4 presents an example of network where, after v13's
insertion, two subgroups would not be verified by
SNCStreamþ unnecessarily, therefore, decreasing the
amount of distance computations and undesired rewirings.
4. Empirical evaluation

In this section we empirically analyze SNCStreamþ 's
clustering performance by comparing its results against
CluStream [3], ClusTree [6], DenStream [5] and HAStream
[17]. Clustering quality results from the original SNCStream
are omitted since these differ only in computational cost,
i.e. processing time and memory space usage.

First, we present the data generators and real datasets
used for this evaluation and the experimental protocol for
the following experiments. Later, we present a parameter
sensitivity analysis, focusing on three of the major para-
meters: (i) the amount ω of edges created during each
node insertion, (ii) the size of the clean-up window Tp; and
(iii) the adopted distance metric for dissimilarity compu-
tation. Finally, we present a performance study of
SNCStreamþ against literature baselines, highlighting
SNCStreamþ 's high clustering quality.

Fig. 4. Example of rewiring after the insertion of vertex v13, where verified vertices are displayed in blue and non-verified in red. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 67
4.1. Data generators and real datasets

Synthetic data streams were generated using the Radial
Basis Function (RBF) generator available at MOA frame-
work [24]. The RBF generator creates a user-given amount
of drifting centroids, which are defined by a label, center,
weight and standard deviation given by a Gaussian dis-
tribution. Another possibility of the RBF generator is the
appearance or disappearance of ground-truth clusters
(concept evolution). We adopt the RBFd notation to refer to
an experiment that uses the RBF generator with a
dimensionality d. In all RBF-based experiments, streams
were created with 50,000 instances where the ground-
truth amount of ground-truth clusters vary in the ½2;8�
interval and an appearance/disappearance of a centroid
occurs randomly every 3000 instances.

Besides the usage of data generators, SNCStreamþ 's
performance is also evaluated along publicly available real
datasets. The following paragraphs briefly describe these
datasets.

Airlines: This dataset contains 539,383 instances and
8 attributes and represents all flight arrivals and depar-
tures from USA airports, from October 1987 until April
2008 [25].

Electricity: This dataset was created by the Australian
New South Wales Electricity Market and stores energy
prices obtained every 5 min [26]. In this problem, energy
prices are not fixed, since they vary accordingly to market
supply and demand. The Electricity dataset consists of
45,312 instances and 8 attributes.

Forest Covertype: This dataset models the forest cov-
ertype prediction problem based on cartographic variables
[27]. This dataset consists of 900 m2 cells obtained from US
Forest Service Region 2 Resource Information System and
contains 581,012 instances with 54 attributes.

KDD'99: This dataset is composed by raw TCP dump
data for a LAN. Each connection has 42 attributes and most
of the 4,898,431 instances are labeled as normal connec-
tions. In addition, this dataset is known to present
appearances of clusters over time, representing previously
unknown types of cyber-attacks [3].

Body Posture and Movements (BPaM): This dataset con-
sists of 165,632 instances collected on 8 hours of activities
of 4 healthy subjects. The original goal is to classify
whether the subject is sitting down, standing up, standing,
walking or sitting based on 18 attributes [28].

4.2. Experimental protocol

All experiments presented in this paper were per-
formed on a Intel Xeon CPU E5649 @ 2.53 GHz�8 based
computer running CentOS with 16GB of memory using
Massive Online Analysis (MOA) framework [24]. All algo-
rithms parameters were set accordingly to their original
papers. CluStream parameters are: Horizon H¼ 1000 and
q¼1000 [3]. ClusTree parameters are: a Horizon H¼ 1000
and a maximum tree height ¼8 [6]. DenStream para-
meters are: ψ¼1, N ¼ 1000, λ¼0.25, ϵ¼0.02 and β¼0.2
[5]. All of the above cited algorithms run a DBSCAN at the
offline step, using the following parameters: ψ ¼ 1,
N ¼ 1000, λ¼0.25, ϵ¼0.02, β¼0.2 and a offline multiplier
η¼2. HAStream uses a DenStream-like online step,
therefore, adopts the same density parameters [17].
Finally, SNCStream and SNCStreamþ 's parameters are:
ψ¼1, N ¼ 100, λ¼0.25, ϵ¼0.02, β¼0.2 and ω¼4 [4]. The
SNCStreamþ implementation used during these experi-
ments is available for download from https://sites.google.
com/site/moasocialbasedalgorithms/home as a plugin for
the MOA framework.

In the following experiments, clustering quality is cal-
culated using the Cluster Mapping Measure (CMM), a
metric developed aiming the characteristics of data
streams [29]. Differently from batch clustering evaluation
metrics (e.g. Purity, Precision, Recall), CMM is an external
clustering evaluation metric that accounts for non-asso-
ciated, mis-associated instances and noisy data inclusion.
It is also important to emphasize that CMM, in opposition
to conventional clustering quality measures such as purity,
considers recently retrieved instances with more weight
than older ones by using an exponential decay function
inside evaluation windows. CMM is bounded in the ½0;1�
interval, being 1 the representation of a perfect clustering.
For more details on the computation on CMM the reader is
referred to [29].

Processing time is computed as the time that each
algorithm used of CPU in seconds and memory usage is
calculated in RAM-Hours, where each RAM-Hour equals to
1 GB of RAM dispensed for an hour of processing.

https://sites.google.com/site/moasocialbasedalgorithms/home
https://sites.google.com/site/moasocialbasedalgorithms/home

J.P. Barddal et al. / Information Systems 62 (2016) 60–7368
In order to determine whether there is significant sta-
tistical difference between algorithms, a combination of
Friedman's [30] and Nemenyi's [31] non-parametric
hypothesis tests is used. Finally, we report significant sta-
tistical differences with critical differences (CD) graphics.

4.3. Parameter sensitivity analysis

Although SNCStream has shown superior clustering
quality when compared to other algorithms [4], a few
questions arise on its parametrization and its power when
performing in high dimensional data streams, such as:

� To what extent the amount of connections ω, which
each instance and micro-cluster establish during their
insertion in the network, impacts clustering quality?

� As in DenStream [5], SNCStream encompasses a clean-
up window size Tp which determines when micro-
clusters' weights should be verified for removal. What
is the impact of Tp in both clustering quality and
processing time?

� Although the original SNCStream presented higher
clustering quality [4], its acuity decays with the increase
of the dimensionality d. Is SNCStream jinxed by the
curse of dimensionality? How can we decrease the
impact of this phenomenon?

To address these questions, we present three testbeds. In
Section 4.3.1 we examine the impact of the amount of
connections ω that each instance or micro-cluster estab-
lishes and its impact in clustering quality. In Section 4.3.2
we debate the impact of the clean-up window size Tp
aiming clustering quality and processing time. In Section
4.3.3, we discuss about the limitation of the original
SNCStream in high dimensional spaces and how SNCStream
can be boosted to decrease it.

4.3.1. The impact of parameter ω
Contrarily to density-based algorithms such as Den-

Stream [5], which rely on a variety of parameters due to
DBSCAN execution during the offline step, SNCStream
relies on only one parameter to find and maintain up-to-
date clusters: the amount of connections ω that each
instance and micro-cluster establishes when added to the
network.
Table 1
CMM obtained by varying ω for SNCStreamþ algorithm.

Experiment CMM

ω¼1 ω¼2 ω¼3 ω¼4 ω

RBF2 0.82 0.97 0.99 0.99 0
RBF5 0.80 0.97 0.99 0.99 0
RBF20 0.71 0.91 0.89 0.88 0
RBF50 0.65 0.86 0.82 0.84 0
Airlines 0.84 0.89 0.94 0.96 0
Electricity 0.71 0.75 0.84 0.89 0
Forest Covertype 0.80 0.85 0.93 0.94 0
KDD'99 0.76 0.81 0.86 0.90 0
BPaM 0.88 0.93 0.96 0.98 0
Therefore, one of the questions around SNCStream is
the impact of the parameter ω in the final clusters. Intui-
tively, if ω is small, the network would be very sparse, and
accordingly to the rewiring process, a higher amount of
clusters would emerge with the addition of new instances
or micro-clusters. Intuitively, if ω is large, it may lead us to
think that the network would be dense due to a higher
amount of edges. In this case, the rewiring process would
not be able to split the network in subgroups and just one
cluster would be found.

As any other parameter, finding the optimal value of ω
reckons on the data stream domain, however, in the ori-
ginal paper we discussed about possible values ofω and its
impact in clustering quality, showing that ω¼4 is a good
choice for a variety of domains [4]. In this testbed we
perform a deeper analysis of such values of ω and its
impact in clustering quality.

In Table 1 we present the CMM results obtained by
SNCStream when varying ω in the ½1;10� interval, where
no single value outperforms all others and there is not
much variation among datasets, with the exception of
ω¼1, which is the worst ranked configuration; and ω¼4,
which presents the best average results. To determine
whether there is significant statistical difference between
any of the tested values, we used Friedman and Nemenyi
tests. The results of such tests are presented in Fig. 5,
where ωA ½2;10�g ðω¼ 1Þ.

The diminished clustering quality obtained when ω¼1
occurs due to a network characteristic: low clustering
coefficient. In Graph Theory, the clustering coefficient is a
metric which measures the tendency of vertices forming
concise subgroups (clusters) [21]. Clustering coefficients
can be measured both locally (measures how embedded in
the network a given vertex is) and globally (how dense
and concise are the clusters in the network). Eq. (5) pre-
sents the computation of the cluster coefficient for an
arbitrary vertex vi, while Eq. (6) presents the computation
of the average cluster coefficient for a network G, where
degðviÞ stands for the degree of a vertex vi, ei ¼PadjðviÞ

vk
degðvkÞ and adjðviÞ is the set of neighbors of vi in G.

The values for clustering coefficients are bounded in [0;1],
where 1 represents the maximum value, implying that the
network is an entirely connected component:

CC við Þ ¼ 2ei
degðviÞ � ðdegðviÞ�1Þ ð5Þ
¼5 ω¼6 ω¼7 ω¼8 ω¼9 ω¼10

.90 0.89 0.88 0.88 0.87 0.87

.91 0.91 0.90 0.87 0.85 0.88

.80 0.78 0.81 0.76 0.75 0.75

.75 0.77 0.74 0.69 0.73 0.78

.97 0.97 0.97 0.98 0.98 0.98

.91 0.93 0.93 0.94 0.95 0.87

.97 0.93 0.97 0.99 0.99 0.99

.92 0.93 0.94 0.94 0.94 0.95

.98 0.99 0.99 0.99 0.99 0.99

Fig. 5. Nemenyi's critical differences for CMM comparison when varying ω.

Fig. 6. Clustering coefficient versus ω in the performed experiments.

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 69
CC Gð Þ ¼ 1
V

X
vi AV

CC við Þ ð6Þ

Recent works show that, in most part of real-world
social networks with apparent communities, vertices tend
to participate of clusters with a high density of edges and
present average clustering coefficients around 0.6 [32,21].
In Fig. 6 we present the cluster coefficient obtained in the
networks when varying the parameter ω in all experi-
ments where ω¼1 presents low clustering coefficient in
all cases since the networks obtained are not dense
enough to form clusters (communities).

4.3.2. The impact of the clean-up window size
Although SNCStream is not bounded to DBSCAN runs, it

still employs the notion of density. As in DenStream,
micro-clustersapos weights decay with time accordingly to
an exponential function and such weights are verified
periodically accordingly to a clean-up window size Tp.

Determining a window size to verify micro-clusters'
weights can be problematic. If the parameters λ, β and ψ
originally suggested by authors in [5] are employed, this
verification will be performed quite often, i.e. Tpr4, the-
oretically inducing a high computational cost due to
excessive linear accesses to micro-clusters.

Although verifying micro-clusters' weights at the arri-
val of each incoming instance, i.e. Tp ¼ 1, provides prompt
removal of those with inadequate weights from the net-
work, it may jeopardize processing time due to unneces-
sary extra linear access to micro-clusters weights [5].

In this section we evaluate the impact of different
values of Tp varying in the [1;50] interval in clustering
quality and processing time for the SNCStream.

Fig. 7(a) presents the average results of CMM obtained
during the RBF20, RBF50, Airlines, Electricity, Forest Cov-
ertype and BPaM experiments. In all cases, the increase of
Tp impacts in a CMM decrease. This corroborates to the fact
that higher values of Tp allow micro-clusters to join the
network while they do not represent the actual state of the
stream, therefore lessening cluster quality.

In Fig. 7(b) and (c) we present the overall CPU Time
used by SNCStream on the RBF2, RBF5 and RBF20 and
Electricity and KDD'99 experiments, where, in opposition
to what is expected, CPU time increases with higher values
of Tp.

Higher values of Tp cause an increase on the amount of
micro-clusters stored in memory, and consequently, more
distance computations must be performed for each arriv-
ing instance x!i. Fig. 7(d) presents a graphic which relates
values of Tp and the amount of distance computations
performed during experiments. We highlight that with the
increase of Tp, the amount of distance computations
exponentially augments due to the higher amount of
micro-clusters maintained by SNCStream. Therefore, we
concluded that Tp ¼ 1 is the best choice in terms of both
clustering quality and processing time since it allows
SNCStream to eliminate old micro-clusters promptly and
decrease the amount of distance computations.

4.3.3. The impact of distance metrics
As any other clustering algorithm that uses the notion

of distance, SNCStream may fall in the curse of dimen-
sionality. The original SNCStream adopts the Euclidian
distance to compute dissimilarity between instances and
micro-clusters [4]. As shown in seminal works [5,8],
Euclidian distances fail to represent significantly the dis-
similarity between points in high dimensional spaces,
enforcing algorithms to fall in their vastitude.

In most high dimensional applications the choice of the
distance metric is concealed and the computation of dis-
similarities is rather heuristical [13]. There is very little
work in the literature providing guidance on choosing the
correct distance metric to calculate dissimilarity between
two instances. Most part of algorithms adopt the Lp norm,
which is also known to be susceptible to the curse of
dimensionality in such spaces [3,5,6]. Generally, the Lp
distance between two instances x!i and x!j can be com-
puted according to the following equation:

dLp x!i; x
!

j

� �
¼

Xd
v ¼ 1

j x!i½v�� x!j½v�jp
" #1

p

ð7Þ

In [13], authors discuss about different values of p,
enlightening that p¼1 (Manhattan distance) and p¼2
(Euclidian distance) are theoretically more efficient than
pZ3. In addition, they prove that the meaningfulness of
the Lp form decays fast with the increase of the dimen-
sionality d [13,33]. Encouraged by this trend, authors in
[13] examined the behavior of fractional distance metrics,
where 0rpr1, and pointed p¼0.3 as an interesting value
for many domains after applying k-means batch clustering
in a series of datasets.

Fig. 7. Results obtained varying Tp .

J.P. Barddal et al. / Information Systems 62 (2016) 60–7370
Another popular distance metric commonly used in
clustering techniques is Cosine distance. Cosine distance
assumes that the dissimilarity between two vectors
(instances) x!i and x!j can be computed as the angle
between these vectors [13]. Eq. (8) presents the cosine
distance computation adapted to the problem of deter-
mining the dissimilarity of two instances:

dCosine x!i; x
!

j

� �
¼ 1�

Pd
v ¼ 1 x!i½v� � x!j½v�ffiPd

v ¼ 1 ð x
!

i½v�Þ2
q ffiPd

v ¼ 1 ð x
!

j½v�Þ2
q

ð8Þ

Assuming the conventional Euclidian distance (L2) it

follows immediately that all instances x!i with the same
distance to the origin satisfy the equation of a spheroidPn

i ¼ 1 ð x
!

iÞ2 ¼ r2, where r is its radius. This means that all
components of a dataset contribute equally to the Eucli-
dian distance from the center. Nevertheless, in statistics, it
is preferable a distance metric that accounts for the
variability of each dimension. In Mahalanobis distance
[34], dimensions with high variability receive less weight
than components with low variability. This is done by
rescaling the dimensions using their standard deviation σ
as stated in the following equation:

dMahalanobis x!i; x
!

j

� �
¼

ffiXd
v ¼ 1

ð x!i½v�� x!j½v�Þ2
σv

vuut ð9Þ

Based on the previously discussed distance metrics we
hypothesize that SNCStream is able to decrease the impact
of the curse of dimensionality, therefore augmenting its
clustering quality in high dimensional data streams. In
order to verify this hypothesis, we extended SNCStream to

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 71
compute the latter distance metrics which are known to
perform well on high dimensional problems. In this test-
bed we evaluate the power provided by such metrics in
SNCStream and finally, compare all algorithms adopting
the best ranked metric.
Fig. 8. CMM obtained by SNCStream adopting different distance metrics
when varying the dimensionality d.

Table 2
CMM obtained by varying SNCStreamþ 's distance metric.

Experiment CMM – SNCStreamþ

L1 L2 L.3 Cosine Mahalanobis

RBF2 0.98 0.98 0.99 0.92 0.98
RBF5 0.98 0.98 0.99 0.95 0.97
RBF20 0.89 0.88 0.99 0.85 0.88
RBF50 0.84 0.84 0.96 0.76 0.86
Airlines 0.97 0.96 0.98 0.96 0.96
Electricity 0.90 0.96 0.98 0.89 0.96
Forest Covertype 0.89 0.89 0.97 0.95 0.95
KDD99 0.90 0.94 0.95 0.90 0.94
BPaM 0.98 0.98 0.99 0.98 0.98

Fig. 9. Nemenyi's critical differences for CMM comparison on different
distance metrics.

Table 3
Average CMM obtained in experiments.

Experiment CMM

CluStream ClusTree

RBF2 0.83 0.88
RBF5 0.67 0.80
RBF20 0.47 0.88
RBF50 0.48 0.44
Airlines 0.67 0.76
Electricity 0.41 0.44
Forest Covertype 0.41 0.43
KDD'99 0.50 0.49
BPaM 0.61 0.69
In Fig. 8 we present the CMM obtained in RBF experi-
ments varying the dimensionality d in the [2;200] interval,
where one can see that with the increase of d, the clus-
tering quality decays, specially in the L1 (Manhattan), L2
(Euclidian) and Cosine distance metrics. In addition, we
highlight the superior results obtained by the fractional
distance metric L:3 specially with the increase of d, there-
fore corroborating its power as stated in [13] (Table 2).

In order to determine whether there is statistical differ-
ence between SNCStream's clustering quality when varying
the adopted distance metric, we executed Friedman followed
by Nemenyi's post-hoc test. Fig. 9 presents the graphical
results obtained, where fL:3ggfMahalanobis; L2; L1; Cosineg
with a 95% confidence level since it differs at least by one
Critical Difference (CD).

4.4. Performance against literature baselines

In this testbed we evaluate CluStream [3], ClusTree [6],
DenStream [5], HAStream [17] and SNCStream [4] using
both synthetic and real data earlier presented in Section
4.1.

Firstly, we compare SNCStream adopting the fractional
distance metric (L0:3) against other algorithms. Table 3
presents the results for clustering quality (CMM), where
SNCStream outperforms others in all experiments.

Significant differences among the algorithms were
found after performing Friedman and Nemenyi tests, in
which the ranks differ by at least a Critical Difference (CD).
Fig. 10(a) shows the graphical representation of results
obtained where fSNCStreamþ ggfHAStream; DenStream;

ClusTree; CluStreamg enlightening the high clustering
quality obtained by SNCStream.

Additionally, we compared results for CPU Time and
RAM-Hours. Fig. 10(b) and (c) presents the results
obtained for these metrics, respectively, where
fClusTree;SNCStreamþ ;HAStreamggfCluStream; DenStream;

SNCStreamg in terms of processing time. Although
SNCStreamþ 's asymptotic complexity is the same as the
original SNCStream's, these results show that there is a
huge gain due to the optimized rewiring procedure. As for
RAM-Hours, we obtained fCluStreamggfSNCStream;

SNCStreamþ ;HAStream; DenStreamggfClusTreeg. We
highlight the fact that SNCStreamþ requires extra memory
space, yet, still appears as the third best ranked algorithm
in this property.
DenStream HAStream SNCStreamþ (L0.3)

0.94 0.87 0.99
0.84 0.86 0.99
0.85 0.91 0.99
0.85 0.81 0.96
0.50 0.70 0.98
0.61 0.43 0.98
0.38 0.37 0.97
0.69 0.77 0.95
0.74 0.74 0.99

Fig. 10. Results obtained by Friedman and Nemenyi hypothesis tests.

Table 4
Average CMM obtained in experiments.

Experiment L0.3 – CMM

CluStream ClusTree DenStream HAStream SNCStreamþ

RBF2 0.87 0.92 0.97 0.91 0.99
RBF5 0.70 0.84 0.88 0.90 0.99
RBF20 0.49 0.92 0.89 0.95 0.96
RBF50 0.50 0.46 0.89 0.85 0.99
Airlines 0.70 0.80 0.52 0.74 0.98
Electricity 0.43 0.46 0.64 0.45 0.98
Forest Covertype 0.44 0.45 0.40 0.39 0.97
KDD'99 0.53 0.51 0.72 0.81 0.95
BPaM 0.64 0.72 0.77 0.77 0.99

Fig. 11. Nemenyi test results for CMM comparison of algorithms adopting
the L0:3 distance metric.

J.P. Barddal et al. / Information Systems 62 (2016) 60–7372
Finally, to determine if other algorithms are capable of
reaching SNCStreamþ 's high clustering quality, we repeat
the same experiments adopting a L0:3 distance metric in all
algorithms and the results obtained are stated in Table 4.
Furthermore, SNCStreamþ still outperforms others in
clustering quality, something corroborated by the
hypothesis test presented in Fig. 11 with a 95% confidence
level. Nevertheless, we emphasize that all algorithms
presented better results when compared to its earlier
results (shown in Table 3), showing that L0:3 is beneficial
regardless or the clustering algorithm.
5. Conclusion

Clustering streaming data is of extreme importance in
many real applications, such as consumer click streams,
telephone usage flows, multimedia data mining [7,8],
computer networks intrusion detection [3], XML and
HTML structures mining [9] and sensor network data
clustering [10]. In this paper we presented SNCStreamþ ,
an extension to the SNCStream [4], a high quality true real-
time data stream clustering algorithm. We analyzed the
main parameter of SNCStreamþ , ω, and its impact in
clustering quality. Additionally, we unveiled the oddity
regarding the value of the clean-up window, which opti-
mally must be set to Tp ¼ 1 to maximize cluster quality and
diminish processing time. Finally, a comparison between a
variety of distance metrics showed that the clustering
quality of SNCStreamþ on high dimensional data streams
can be boosted, therefore decreasing the impact of the
curse of dimensionality. Based on this extensive empirical
comparison with recent approaches, we have shown that
SNCStreamþ outperforms a variety of data stream clus-
tering algorithms in terms of clustering quality and acts
within limited processing time and memory space for both
synthetic and real data problems. We emphasize that
SNCStreamþ presents decreased average computation
complexity with an extra memory consumption bounded
to OðjVj2Þ when compared to the original SNCStream.
Acknowledgments

Authors would like to thank the anonymous reviewers
for their constructive comments that highly improved this
paper. This research was partially funded by CAPES

J.P. Barddal et al. / Information Systems 62 (2016) 60–73 73
(Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior) and Fundação Araucária.
References

[1] A. Bifet, J. Read, I. Zliobaite, B. Pfahringer, G. Holmes, Pitfalls in
benchmarking data stream classification and how to avoid them, in:
ECML/PKDD (1), 2013, pp. 465–479.

[2] P. Domingos, G. Hulten, Mining high-speed data streams, in: Pro-
ceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '00, ACM, New York,
NY, USA, 2000, pp. 71–80, http://dx.doi.org/10.1145/347090.347107.

[3] C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A framework for clustering
evolving data streams, in: Proceedings of the 29th International
Conference on Very Large Data Bases, VLDB '03, VLDB Endowment,
vol. 29, 2003, pp. 81–92.

[4] J.P. Barddal, H.M. Gomes, F. Enembreck, SNCStream: a social
network-based data stream clustering algorithm, in: Proceedings of
the 30th Annual ACM Symposium on Applied Computing (SAC),
New York, NY, USA, 2015, pp. 935–940.

[5] F. Cao, M. Ester, W. Qian, A. Zhou, Density-based clustering over an
evolving data stream with noise, in: SDM, 2006, pp. 328–339.

[6] P. Kranen, I. Assent, C. Baldauf, T. Seidl, The clustree: indexing micro-
clusters for anytime stream mining, Knowl. Inf. Syst. 29 (2) (2011)
249–272.

[7] S. Guha, Tight results for clustering and summarizing data streams,
in: Proceedings of the 12th International Conference on Database
Theory, ICDT '09, ACM, New York, NY, USA, 2009, pp. 268–275,
http://dx.doi.org/10.1145/1514894.1514926.

[8] J.A. Silva, E.R. Faria, R.C. Barros, E.R. Hruschka, A.C.P.L.F.d. Carvalho
J.a. Gama, Data stream clustering: a survey, ACM Comput. Surv. 46
(1) (2013) http://dx.doi.org/10.1145/2522968.2522981. 13:1–13:31.

[9] C.C. Aggarwal, P. Yu, On clustering techniques for change diagnosis
in data streams, in: O. Nasraoui, O. Zaiane, M. Spiliopoulou,
B. Mobasher, B. Masand, P.S. Yu (Eds.), Advances in Web Mining and
Web Usage Analysis, Lecture Notes in Computer Science, vol. 4198,
Springer, Berlin, Heidelberg, 2006, pp. 139–157.

[10] P. Rodrigues, J. Gama, J. Pedroso, Hierarchical clustering of time-
series data streams, IEEE Trans. Knowl. Data Eng. 20 (5) (2008)
615–627, http://dx.doi.org/10.1109/TKDE.2007.190727.

[11] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey
on concept drift adaptation, ACM Comput. Surv. 46 (4) (2014) http:
//dx.doi.org/10.1145/2523813. 44:1–44:37.

[12] M.M. Masud, J. Gao, L. Khan, J. Han, B.M. Thuraisingham, Classifica-
tion and novel class detection in concept-drifting data streams
under time constraints, IEEE Trans. Knowl. Data Eng. 23 (6) (2011)
859–874.

[13] C.C. Aggarwal, A. Hinneburg, D.A. Keim, On the surprising behavior
of distance metrics in high dimensional space, in: Database Theory
— ICDT 2001: 8th International Conference London, UK, January 4–6,
2001 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
2001, pp. 420–434, http://dx.doi.org/10.1007/3-540-44503-X_27.

[14] J. Gama, Knowledge Discovery from Data Streams, 1st Edition,
Chapman & Hall/CRC, 2010.

[15] A. Amini, T.Y. Wah, On density-based data streams clustering algo-
rithms: a survey, J. Comput. Sci. Technol. 29 (1) (2014) 116–141, http:
//dx.doi.org/10.1007/s11390-014-1416-y.

[16] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd
ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.
[17] M. Hassani, P. Spaus, T. Seidl, Adaptive multiple-resolution stream
clustering, in: P. Perner (Ed.), Machine Learning and Data Mining in
Pattern Recognition, Lecture Notes in Computer Science, vol. 8556,
Springer International Publishing, Cham, 2014, pp. 134–148.

[18] S. Lloyd, Least squares quantization in pcm, IEEE Trans. Inf. Theor. 28
(2) (1982) 129–137.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise, in:
E. Simoudis, J. Han, U.M. Fayyad (Eds.), KDD, AAAI Press, Portland,
Oregon, USA, 1996, pp. 226–231.

[20] A. Guttman, R-trees: a dynamic index structure for spatial searching,
in: Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, SIGMOD '84, ACM, New York, NY, USA,
1984, pp. 47–57, http://dx.doi.org/10.1145/602259.602266.

[21] M. Van Steen, Graph Theory and Complex Networks: An Introduc-
tion, Maarten Van Steen, Amsterdam, The Netherlands, 2010.

[22] D. Michie, ‘Memo’ functions and machine learning, Nature 218
(1968) 19–22, http://dx.doi.org/10.1038/218019a0.

[23] A.L. Rosenberg, Efficient pairing functions—and why you should
care, in: Proceedings of the 16th International Parallel and Dis-
tributed Processing Symposium, IPDPS '02, IEEE Computer Society,
Washington, DC, USA, 2002.

[24] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: massive online
analysis, J. Mach. Learn. Res. 11 (2010) 1601–1604.

[25] E. Ikonomovska, J. Gama, B. Zenko, S. Dzeroski, Speeding-up
Hoeffding-based regression trees with options, in: ICML, 2011,
pp. 537–544.

[26] M. Harries, N.S. Wales, Splice-2 comparative evaluation: Electricity
Pricing, 1999.

[27] P. Kosina, J.a. Gama, Very fast decision rules for multi-class pro-
blems, in: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC '12, ACM, New York, NY, USA, 2012,
pp. 795–800, http://dx.doi.org/10.1145/2245276.2245431.

[28] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy
Milidiú, Hugo Fuks, Wearable computing: accelerometers' data
classification of body postures and movements, in: Barros, Leliane N
and Finger, Marcelo and Pozo, Aurora T. and Gimenénez-Lugo,
Gustavo A. and Castilho, Marcos (eds), Advances in Artificial Intel-
ligence—SBIA 2012, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2012, pp. 52–61.

[29] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, B.
Pfahringer, An effective evaluation measure for clustering on evol-
ving data streams, in: Proceedings of the 17th ACM Conference on
Knowledge Discovery and Data Mining (SIGKDD 2011), San Diego,
CA, USA, ACM, New York, NY, USA, 2011, pp. 868–876.

[30] M. Friedman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, J. Am. Stat. Assoc. 32 (200) (1937)
675–701, http://dx.doi.org/10.2307/2279372.

[31] P. Nemenyi, Distribution-free multiple comparisons (Ph.D. thesis),
New Jersey, USA, 1963.

[32] R. Albert, A.-L. Barab´asi, Statistical mechanics of complex networks,
Rev. Mod. Phys. 74 (2002) 47–97.

[33] K.S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is “nearest
neighbor” meaningful? in: Proceedings of the 7th International
Conference on Database Theory, ICDT '99, Springer-Verlag, London,
UK, UK, 1999, pp. 217–235.

[34] M.R. Ackermann, J. Blömer, C. Sohler, Clustering for metric and
nonmetric distance measures, ACM Trans. Algorithms 6 (4) (2010)
59:1–59:26.

dx.doi.org/10.1145/347090.347107
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref6
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref6
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref6
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref6
dx.doi.org/10.1145/1514894.1514926
http://dx.doi.org/10.1145/2522968.2522981
http://dx.doi.org/10.1145/2522968.2522981
http://dx.doi.org/10.1145/2522968.2522981
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref9
http://dx.doi.org/10.1109/TKDE.2007.190727
http://dx.doi.org/10.1109/TKDE.2007.190727
http://dx.doi.org/10.1109/TKDE.2007.190727
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref12
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref12
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref12
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref12
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref12
dx.doi.org/10.1007/3-540-44503-X_27
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref14
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref14
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref14
http://dx.doi.org/10.1007/s11390-014-1416-y
http://dx.doi.org/10.1007/s11390-014-1416-y
http://dx.doi.org/10.1007/s11390-014-1416-y
http://dx.doi.org/10.1007/s11390-014-1416-y
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref16
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref16
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref17
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref17
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref17
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref17
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref17
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref18
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref18
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref18
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref19
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref19
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref19
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref19
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref19
dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1038/218019a0
http://dx.doi.org/10.1038/218019a0
http://dx.doi.org/10.1038/218019a0
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref24
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref24
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref24
dx.doi.org/10.1145/2245276.2245431
http://dx.doi.org/10.2307/2279372
http://dx.doi.org/10.2307/2279372
http://dx.doi.org/10.2307/2279372
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref1032
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref1032
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref1032
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref34
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref34
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref34
http://refhub.elsevier.com/S0306-4379(16)30281-2/sbref34

	SNCStreamplus: Extending a high quality true anytime data stream clustering algorithm
	Introduction
	Data stream clustering
	CluStream
	ClusTree
	DenStream
	HAStream
	Social network clusterer stream

	The social network clusterer streamplus
	Initial network construction
	Network transformation
	Network evolution
	Algorithm speedup, time and space complexity analysis
	Distances memoization
	Rewiring through dissipation

	Empirical evaluation
	Data generators and real datasets
	Experimental protocol
	Parameter sensitivity analysis
	The impact of parameter ω
	The impact of the clean-up window size
	The impact of distance metrics

	Performance against literature baselines

	Conclusion
	Acknowledgments
	References

