
A Survey on Feature Drift Adaptation

Jean Paul Barddal, Heitor Murilo Gomes and Fabrı́cio Enembreck
Graduate Program in Informatics (PPGIa)

Pontifı́cia Universidade Católica do Paraná

Curitiba, Brazil

Email: {jean.barddal, hmgomes, fabricio}@ppgia.pucpr.br

Abstract—Mining data streams is of the utmost importance
due to its appearance in many real-world situations, such as:
sensor networks, stock market analysis and computer networks
intrusion detection systems. Data streams are, by definition, po-
tentially unbounded sequences of data that arrive intermittently
at rapid rates. Extracting useful knowledge from data streams
embeds virtually all problems from conventional data mining with
the addition of single-pass real-time processing within limited
time and memory space. Additionally, due to its ephemeral
nature, it is expected that streams undergo changes in its data
distribution denominated concept drifts. In this work, we focus
on one specific kind of concept drift that has not been extensively
addressed in the literature, namely feature drift. A feature drift
happens when changes occur in the set of features, such that a
subset of features become, or cease to be, relevant to the learning
problem. Specifically, changes in the relevance of features directly
imply modifications in the decision boundary to be learned, thus
the learner must detect and adapt to according to it. Timely
detection and recover from feature drifts is a challenging task that
can be modeled after a dynamic feature selection problem. In this
paper we survey existing work on dynamic feature selection for
data streams that acts either implicitly or explicitly. We conclude
that there is a need for future research in this area, which we
highlight as future research directions.

I. INTRODUCTION

In the last decades the interest in mining massive and
potentially unbounded datasets which arrive at rapid rates,
namely data streams, has grown substantially. Mining data
streams is of the utmost importance since many available
data generators produce enormous amounts of data over time.
Examples of data streams include sensor networks, wearable
sensors, computer network traffic sniffers and video surveil-
lance, to name a few. Aiming at extracting useful knowledge
from these massive amounts of data, a variety of inductive
learning techniques were developed and achieved concrete
results in both supervised [1], [2] and unsupervised [3], [4],
[5], [6] tasks.

The most common learning problem in a streaming context
is classification. In this problem, instances are associated
with labels and the main objective is to learn from labeled
data how to determine the label of future instances. Data
stream classification algorithms are presented to a great and
possibly unbounded amount of data, each of which are made
available to the algorithm in a serialized fast-paced fashion [7].
Moreover, due to inherent aspects of data streams, we must
assume that the underlying concept is unstable, i.e. changes in
the concept to be learned are expected to occur, phenomenon
named concept drift [8].

Although current techniques for data stream classification

handle most of the challenges posed by the streaming environ-
ment, not many attention has been given to possible changes
in the relevance of features through time, i.e. feature drifts.
This enforces classification algorithms to include strategies
to keep track of the most discriminative set of features of
the stream by using feature selection methods. The benefits
of an accurate feature selection method is that the classifier
can process instances faster using less memory space usage,
and present higher acuity [9]. These benefits are due to the
diminished dimensionality, which requires less resources and
maintains only meaningful features for the classifier training.
Nevertheless, feature selection is a difficult task and in a
streaming environment it becomes even more complicated. In
this paper we review the classification task for data streams
(Sec. II), and highlight the feature drift problem (Sec. III).
Additionally, we survey existing work that performs feature
selection during stream processing in both explicit and im-
plicit fashions, highlighting theirs major limitations (Sec. IV).
Finally, we state the challenges of this research area and future
directions (Sec. VI).

II. DATA STREAM CLASSIFICATION

The most common approach for extracting useful knowl-
edge from data streams is classification. Classification is the
task that distributes a set of instances into discrete classes
accordingly to relations or affinities. The classification task
can be formalized as follows: a set of n training instances
in the form i = (�xi, yi) where yi is a discrete class label
and �xi is a d-dimensional vector of attributes belonging to a
feature set (dimensions) D = {D1, . . . , Dd}, which can be
categorical, ordinal, numeric or mixed. A classifier produces

from this training set a model f : (�X → Y) that is used to
classify future unlabeled instances.

Data stream classification or online classification, is a vari-
ant of the machine learning task namely batch classification,
however, both are concerned with the problem of learning a
model which is able to predict a nominal value for future in-
stances. The difference between these two approaches concerns
about how data is presented to the learner. In batch configu-
ration, a static and entirely accessible dataset is provided to
the learning algorithm, which returns a model to predict future
instances. Conversely, in streaming environments, instances are
not readily available to the classifier for training, instead, these
are presented sequentially over time and the learner must adapt
its model as new instances arrive [10], [11].

Let S = [it]
∞
t=0 represent a data stream providing instances

it = (�xt, yt), each of which arrives at a timestamp t, where

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.150

1052

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.150

1053

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

1082-3409/15 $31.00 © 2015 IEEE

DOI 10.1109/ICTAI.2015.150

1053

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

�xt is a d-dimensional attribute vector belonging to a attribute
set D and yt is the ground-truth label of �xt.

Most of traditional existing classification algorithms de-
pend on the existence of a static dataset generated by a
unknown, yet stationary, probability distribution. Also, some
algorithms require multiple passes over data to obtain an ac-
curate hypothesis. Nonetheless, none of the latter assumptions
can be verified in the streaming scenario and the development
of algorithms must take into account several constraints [7],
[10], [12], [13], [14], [15], [16].

Firstly, instances arrive continuously over time and there
is no control over the order that instances arrive nor how
they should be processed. Additionally, streams are potentially
unbounded, therefore, instances should be discarded right after
their processing (or accordingly to available main memory
space). Due to the inherent temporal aspect of data streams,
their underlying data distribution is expected to dynamically
change over time, implying in changes in the concept to be
learned, phenomenon named concept drift.

Let Eq. 1 denote a concept C, a set of prior probabilities of
the classes and class-conditional probability density function
[17].

C = {(P [y1], P [�x|y1]), . . . , (P [yc], P [�x|yc])} (1)

Given a stream S, instances it retrieved will be generated
by a concept Ct. If during every instant ti of S we have
Cti = Cti−1

, it occurs that the concept is stable. Otherwise, if
between any two timestamps ti and tj occurs that Cti �= Ctj ,
we have a concept drift.

III. FEATURE DRIFT

Most of existing algorithms for data streams tackle the
infinite length and drifting concept characteristics. However,
not much attention has been given to the feature drift problem.
Feature drifts occur whenever the relevance of a feature Di,
such that Di ∈ D, grows or shrinks for incoming instances.
This requires that the learning algorithm adapt its model in
a way that relevant features are highlighted, while irrelevant
attributes are obfuscated [17].

Given a feature space D at a timestamp t, we are able
to select the ground-truth discriminative subset D∗t ⊆ D. A
feature drift occurs if, at any two time instants ti and tj , D∗ti �=D∗tj betides. Let r(Di, tj) ∈ {0, 1} denote a function which
determines the relevance of a feature Di in a timestamp tj
of the stream. A positive relevance (r(Di, ti) = 1) states that
Di ∈ D∗ in a timestamp ti and that Di impacts the underlying
probabilities P [�x|yi] of the concept Ct of S. A feature drift
occurs whenever the relevance of an attribute Di changes in a
timespan between tj and tk, as stated in Eq. 2.

∃tj∃tk, tj < tk, r(Di, tj) �= r(Di, tk) (2)

Changes in r(·, ·) directly affect the ground-truth decision
boundary to be learned by the inductive algorithm. Therefore,
feature drifts can be seen as a specific type of concept drift
that may occur with or without changes in the data distribution
P [�x].

As in concept drifts, changes in r(·, ·) may occur during
the stream. This enforces learning algorithms to detect changes
in D∗, discerning between features that became irrelevant and
the ones that are now relevant. Finally, it is necessary to either
(i) discard and learn an entirely new classification model; or
(ii) adapt the current model to these relevance changes [17].

Although feature drifts may occur in a variety of envi-
ronments, one of the most common is text mining. In order
to exemplify a feature drift, we refer to the e-mail spam
detection system presented in [18]. This system was a result of
a text mining process on an online news dissemination system.
Essentially, this work intended on creating an incremental
filtering of emails that classifies emails as spam or ham and,
based on this classification, decides whether this email is
relevant for dissemination among users. The dataset created
contains 9,324 instances and 39,917 features, such that each
attribute represents the presence of a single word (feature) in
an instance (e-mail). This dataset is known for containing a
feature drift which occurs gradually around the instance of
number 1,500 [18], [19] and highly impacts the learner.

In Fig. 1a we present a plot of the information gain (pre-
sented in Eq. 3, however, relies on the computation of Entropy
stated in Eq. 4) [20] of two specific attributes presented in this
problem, namely “directed” and “info”, where one can see
that the importance of these two attributes start exchanging
gradually around instance 1,500.

IG(Di) = H(Di)−
∏

Dj∈D,Dj �=Di

H(Dj)

n
(3)

H(Di) = −
∑
q∈Di

P [q] log2 P [q] (4)

Detecting and discerning the two features that exchange
relevances as the stream progresses is an important task that
must be embedded within streaming learning algorithms, since
changes greatly impact the accuracy of the model (Fig. 1b)
and learning with a subset of the whole feature set of also
computationally faster. We refrain from providing a detailed
description of these classifiers since the Very Fast Decision
Tree (VFDT) and Very Fast Decision Rules (VFDR) will be
discussed in Secs. IV-A and IV-B, respectively.

IV. EXISTING WORKS

There are few works in the literature that perform feature
selection during stream learning. There are even fewer that
aim at explicitly detecting and adapting to feature drifts. In
this section we summarize the existing algorithms that perform
feature selection as the stream progresses, either assuming the
existence or not of feature drifts. We emphasize that most of
the surveyed work here presented were not developed aiming
at detecting and adapting to feature drifts, however, they do
so through randomness or combinatorics; and henceforth are
referred as implicit approaches.

In Table I we summarize the existing algorithms. We
categorize these algorithms accordingly to four characteristics:
it’s learning approach, the type of feature selection algorithm,

105310541054

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

0

2,
00
0

4,
00
0

6,
00
0

8,
00
0

0

0.5

1 directed

info

Instances

In
fo

rm
at

io
n

G
ai

n

(a)

0

2,
00
0

4,
00
0

6,
00
0

8,
00
0

40
60
80
100 VFDT

VFDR

Instances

A
cc

u
ra

cy
(%

)

(b)

Fig. 1: Analysis of information gain for two specific features and accuracy obtained on the Spam Corpus dataset. (a) Information
gain of features “directed” and “info” during the stream. (b) Accuracy obtained for a decision tree (VFDT) and a decision rule
learner (VFDR).

feature drift adaptation method adopted; and whether it per-
forms explicit dynamic feature selection or not.

We start this section by discussing two important and
widely used approaches for classifying data streams: decision
trees (Sec. IV-A) and decision rules (Sec. IV-B). Although
most part of the summarized algorithms presented in this paper
were not developed aiming at performing feature drift detection
and adaptation, we discuss them and highlight their capabilities
to face this problem, either through randomness (Sec. IV-C),
combinatorics (Sec. IV-D) or windowing (Sec. IV-E).

A. Decision Trees

Learning with decision trees is a predictive approach used
in statistics, data mining and machine learning. In its simplest
implementations, each internal node contains a test on a feature
Di, each branch from a node corresponds to an outcome of the
test and each leaf contains a possible prediction (class value
from Y) [10].

Predictions for instances �xi are obtained by traversing the
tree with features’ values, determining which branch should be
followed, until a leave is reached. Decision trees are learned
by recursion, replacing leaves by test nodes, starting at the
root. The feature of each test node is chosen by comparing all
the available attributes Di ∈ D accordingly to some heuristic
measure (e.g. Gain Ratio, Information Gain and Entropy).

1) Very Fast Decision Tree: The Very Fast Decision Tree
(VFDT) constructs decision trees by using constant memory
and constant time per sample [21]. Trees are built by recur-
sively replacing leaves with decision nodes, as data arrives.
Different heuristic evaluation functions are used to determine
whether a split should be performed or not, such as Entropy
(Eq. 4), Information Gain (Eq. 3) and Gini Coefficient (Eq.
5) [27], where n is the amount of instances in the dataset
analyzed.

GI(Di) = 1−
∑
q∈Di

P [q] (5)

To do so, VFDT assumes that the input data meets the
Hoeffding bound [28]. The Hoeffding Inequality states that
with probability 1−δ the true mean of a variable is at least r̄−ε,
where ε is given by Eq. 6, δ is a user-given confidence bound,

r ∈ R
+ is a random variable with range R, n is the number

of independent observations and n̄ is the mean computed by
the latter observations.

ε =

√
R2 ln

(
1
δ

)
2n

(6)

The Hoeffding bound is able to give results regardless
the probability distribution that generates data. However, the
number of observations needed to reach certain values of δ
and ε are different across different probability distributions
[29]. Generally, with probability (1− δ), one can say that one
attribute is superior when compared to others when observed
difference of information gain (or any other heuristic goodness
metric of an attribute) is greater than ε.

Although VFDT performs embedded feature selection in
data streams to build its model, it assumes that the distribution
generating data does not change over time, therefore, it does
not detect nor adapt to possible concept and feature drifts.

B. Decision Rules

Although decision trees account for readability, in some
specific scenarios, where trees tend to grow largely, they
become hard to understand since nodes appear in a specific
context defined by tests at antecedent nodes [25]. In contrast,
classifiers based on rules have the advantage of both modular-
ity and interpretability [30], where each rule is independent of
the others and can be interpreted isolated from others.

A decision rule is a logic predicate in the IF antecedent
THEN label form, where the antecedent is a conjunction of
conditions over attributes Di and the label is a possible class
value that belongs to Y . Rules can be updated or removed
when outdated so the model may evolve naturally in streaming
scenarios.

1) Facil: The first streaming rule learner published was
Facil [22]. Facil creates rules accordingly to the arrival of
instances in incremental fashion. In order to cope with concept
drifts, Facil encompasses both explicit and implicit forgetting
mechanisms. The explicit approach occurs when the examples
are older than a user-given threshold W , adopting a sliding
window approach to eliminate old rules. Conversely, implicit
forgetting occurs when removing rules that are not relevant

105410551055

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of existing algorithms that perform feature selection during stream learning.

Algorithm
Learning
Approach

Feature Selection
Algorithm

Feature Drift
Adaptation Method

Explicit Dynamic
Feature Selection

Reference

VFDT Tree
Entropy

Information Gain
Gini Coefficient

– [21]

Facil Rules Purity – [22]
VFDR Rules Entropy – [23]

CVFDT Tree
Entropy

Information Gain
Gini Coefficient

Windowing � [24]

Random Rules Ensemble (Rules) – Randomness/Combinatorics [25]
Streaming Random Forest Ensemble (Trees) – Randomness/Combinatorics [12], [13]

Streaming Stacking Ensemble (Trees) – Combinatorics [26]
HEFT-Stream Ensemble FCBF Windowing � [17]

as they do not enforce any concept description boundary.
This approach’s rationale is that rules are inconsistent if they
store both positive and negative instances which are near to
one another at the decision boundaries. Therefore, rules are
removed if the impurity (ratio between positive instances it
covers and its total number of cover examples) of a rule
reaches a user-given threshold. Whenever the removal of a
rule occurs, the subset originally covered by these rules are
used to form two new rules that achieve satisfiable purity. One
of the major restrictions of Facil is that numeric input data
must be normalized in the [0; 1] interval.

2) Very Fast Decision Rules: A more robust approach
for learning rules from data streams is proposed in [23].
This algorithm, namely Very Fast Decision Rules (VFDR)
is capable of learning ordered and/or unordered rules. The
algorithm starts with an empty rule set and rules are grown
accordingly to the minimization of entropy of class labels of
instances covered by each rule. Rules are grown accordingly
to the arrival of instances, by selecting attributes that minimize
the entropy (Eq. 4) of the class distribution in each data
partition. Additionally, VFDR decided whether a rule should
be expanded given the Hoeffding bound (Eq. 6).

VFDR considers two cases of rule learning: ordered and
unordered sets of rules. In the former, all labeled instances
update statistics of the first rule triggered by it. In the latter,
labeled instances update statistics of all covering rules. In both
cases, if no rules cover an instance, the default rule is updated.

Finally, VFDR encompasses two classification strategies.
The first uses only the information about class distributions and
does not account for attribute’s values. Since it uses a small
part of the available information, it is a crude approximation
of the instances. Conversely, in an informed strategy, instances
are classified with the class that maximizes the posteriori
probability assuming the independence of attributes given the
class (P [yi|�x] ∝ P [yi]

∏
P [�xj |yi]).

C. Randomness

Diversity is a trait of a variety of recently proposed algo-
rithms for learning from data streams [31], [32], [33]. In these
approaches, ensembles of experts are trained in parallel, and
each of which receives different inputs for training [34]. The
most well-known approach for inducing diversity in ensembles
is Bagging [35]. Originally, a bagging ensemble is composed

of m classifiers, which are trained with bootstraps �Xj of the

whole training set �X . Subsets are formed by sampling with

replacement from training set �X . However, sampling usually

is not feasible in a data stream configuration, since that would
require storing all instances before creating subsets. Therefore,
authors in [33] observed that the probability of an instance �xi

to be selected for a subset can be approximated by a Poisson
distribution with λ = 1.

Although promoting diversity through instances is an in-
teresting approach to boost accuracy of learners, more re-
cent approaches aim at promoting diversity through different
feature subsets [12], [13]. By learning through ensembles
with different features, experts learn partially (or completely)
disjoint areas of the feature space, implying in a highly diverse
ensemble. Although these algorithms do not focus explicitly in
adapting to feature drifts, they do present implicit adaptation
to this characteristic of data streams.

1) Streaming Random Forest: The Streaming Random For-
est classifier is an adaptation of the ensemble-based Random
Forest classifier [36]. Random forests are ensembles of deci-
sion trees. Assuming a dataset with n instances, each belonging
to a feature set D, random forests grow a set of trees, each
from a bootstrap from the whole training set. Bootstrapping
guarantees that about n

3 of the records are not included in the
training set and so are available for evaluation of each tree
[13], [37].

The construction of each tree follows a variant of typical
decision tree building algorithm. In standard decision tree
algorithms, the set of attributes considered at a node is the
entire set D. Conversely, in the random forest algorithm, the
set of attributes considered at each tree of the ensemble is a
randomly chosen subset D′ ⊂ D, where |D′| ≤M .

Since a random forest is an ensemble classifier, the clas-
sification of each new instance is the fusion of the votes of
the containing trees. Therefore, the random forest classification
error depends on (i) the correlation among its component trees,
since smaller correlations imply in higher variance canceling
in voting and (ii) the strength of each individual tree, since the
more accurate each subtree is, the better its individual vote and
smaller is the error rate [12].

The value of M is a sensitive parameter of random forests
and must be chosen carefully. Small values of M tend to
increase the strength of each individual tree, while decreases
the correlation between them [12].

2) Random Rules: In [25], authors extend the VFDR
algorithm by promoting randomness. This algorithm, namely
Random Rules for Data Stream (RR), encompasses the follow-
ing parameters: a number of rule sets (Ns) and the number of

105510561056

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

attributes M that must respect the M < |D| restriction.

Initially, each of the composing rule sets is empty and each
of these is associated with a random subset D′ ⊂ D of size M .
For each instance it retrieved from S , RR generates a random
number p between 0 and 1 for each rule set. If p ≥ Trnd, a
user-given threshold, RR verifies whether each rule set contains
a rule that covers it, i.e. if all the literals of the rule are true
for the given instance. If so, all covering rules are expanded
using only the features adopted by the rule set D′. Otherwise,
it is, if no rules cover it, the default rule is updated to cover
it, again, respecting the features in D′.

Finally, authors presented two voting schemes. The first
classifies �xt with the class yi that maximizes P [yi], while
the second assumes the class that maximizes the posteriori
probability (maxyi∈Y P [yi|�xt]).

D. Combinatorics

By exploring combinatorics, random forest and random
rules algorithms can be extended and posed as dynamic
wrappers for dynamic feature selection for data streams. If
one assumes a random forest or a random rule algorithm,
where each of its containing expert is trained with a different
subset from the entire feature set D, and that the cardinality
of each subset is at maximum M , the ensemble would contain∑M

i=1

(
M
i

)
experts. Although training this high amount of ex-

perts is computationally expensive in terms of both processing
time and memory space, it guarantees that a near optimal (or
optimal, if M ≥ |D∗|) subset D′ allocated to one of the experts
will maximize its acuity metric [13]. Therefore, by applying
weighted majority voting [38], feature drifts can be detected
accordingly to the increase of the weights of experts with the
current most discriminative subsets of features, while those
with subsets of irrelevant features will possess diminished
weights due to lower acuity.

1) Streaming Stacking: In [26], authors produce a classi-
fication model based on an ensemble of decision trees, each
of which is built from a random and distinct subset of D.
The overall model is formed by combining the log-odds of
the class probabilities of its containing trees using sigmoid
perceptrons, with one perceptron per class. Contrarily to the
conventional boosting approach, which forms an ensemble in
a greedy fashion, each tree is built in sequence by assigning
weights as a by-product, their method generates trees in paral-
lel and combines them using perceptron classifiers by applying
stacking [39]. Due to the streaming scenario, VFDTs are used
as ensemble members since they can be trained incrementally.
Additionally, the ensemble adopts the ADWIN change detector
[29] in order to detect and adapt to possible concept drifts. This
approach is based on generating trees for all possible feature
subsets of a given size M . Assuming a feature set D of size d,
there are

(
d
M

)
possible subsets. Clearly, only moderate values

of M or values close to d are practical, since
(
d
M

)
=

(
d

d−M

)
.

Authors claim that M = 2 is very practical for datasets with
a large number of features, although certainly not feasible for
high-dimensional data (e.g. Spam Corpus).

E. Windowing

A common approach for both data management and dealing
with drifting data is to maintain a predictive model consistent

with a set of recent examples [16]. There are three major
windowing techniques in the literature: sliding, damped and
landmark; and in all cases, the difficulty is to select their
appropriate size. While short windows reflect the current
data distribution and ensures fast adaptation to drifts, shorter
ones worsen the performance of the system in stable areas.
Conversely, larger windows give better performance in stable
periods, however, these imply in slower reaction to drifts [40],
[11].

Sliding windows store in memory a fixed or variable
amount of recent examples. In the fixed approach, whenever a
new instance arrives, it is saved in a FIFO (first in, first out)
policy data structure, where the oldest one is discarded. In
variable-sized windows, the amount of instances in this data
structure may change over time, usually accordingly to the
outputs of a change detector. A straightforward idea is to shrink
the window when changes in data are detected, so that the data
stored in memory reflects the current concept.

In opposition to sliding windows, in damped windows,
data is associated with time decaying weights [41]. Therefore,
more recent instances receive higher weight than older ones,
and these weights decay with time accordingly to a decaying
function. This windowing technique is interesting because
these weights can be seen as indicatives of how important an
instance is to the current concept, thus, may be accounted for
during voting.

Finally, landmark windows require processing a stream
by handling disjoint chunks of data separately by instances
called “landmarks”. Landmarks can be defined in terms of
time, in terms of the number of instances seen since the
previous landmark or accordingly to memory constraints [42].
All instances belonging to a same landmark window are stored
or summarized into a same data structure, which is used for
training. When a new landmark is reached, all data in the
current window is discarded and further instances retrieved
from the stream are kept until a new landmark is reached.

The problem in using any fixed-length window approach
is how to define its size. Small windows guarantee that the
stream learning algorithm is able to rapidly adapt to drifts in
underlying data, while in long stable phases, its performance
may be put in risk [16], [43]. Conversely, large windows are
desirable in stable phases, while these may not allow quick
adaptation to drifts [43].

In this section we present existing works that rely in
windowing approaches to explicitly adapt to feature drifts.

1) Concept-adapting Very Fast Decision Tree: Concept-
adapting Very Fast Decision Tree (CVFDT) algorithm is an
extension to the VFDT to deal with concept drifts [24].
CFVDT keeps a model consistent with respect to the current
state of a sliding window from the data stream, thus creating
and replacing alternate decision subtrees when it detects that
the distribution of data is changing at a node. Whenever a new
instance it arrives, CFVDT updates the statistics at its nodes
by decrementing counters accordingly to the oldest element in
the window, which is about to be dequeued and “forgotten”.

Therefore, CFVDT is an Hoeffding Tree which periodically
verifies the statistics of nodes to determine if the Hoeffding
criterion is still met. Accordingly to user-given parameters T0,

105610571057

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

T1 and T2, CFVDT traverses all the decision tree and checks
at each node if the splitting attribute is still the best when
compared to others. If there is an alternate better splitting
attribute, the whole subtree is replaced by a new split node with
this attribute. Later, during the next T1 instances, all retrieved
instances from S are used to build the new subtree, which are
then tested with the following T2 instances.

2) Heterogeneous Ensemble for Data Stream: The Hetero-
geneous Ensemble with Feature Drift for Data Stream (HEFT-
Stream) is an algorithm that incorporates feature selection
into an heterogeneous ensemble to adapt to different types of
concept and feature drifts [17]. HEFT-Stream adopts an modi-
fication of the Fast Correlation-Based Filter (FCBF) algorithm
so it updates the selected relevant feature subset of a stream.

FCBF is a feature selection algorithm where the class
relevance and the pairwise dependency between features are
accounted for. Based on information theory, FCBF adopts
symmetrical uncertainty (SU) to compute dependencies of
features and class relevance. On a top-bottom approach, it
is, starting from the whole feature set D, FCBF heuristically
applies a backward selection technique to remove irrelevant
and redundant features.

Symmetrical uncertainty uses both entropy and conditional
entropy to calculate the dependencies of features. Assuming
two arbitrary features Di and Dj , the symmetrical uncertainty
between these two can be computed accordingly to Eq. 7,
where H(·) is the entropy of a feature (shown in Eq. 4),
H(·, ·) is the conditional entropy and MI(·, ·) is the mutual
information between two features (stated in Eq. 8).

SU(Di, Dj) = 2

[
MI(Di, Dj)

H(Di) +H(Dj)

]
(7)

MI(Di, Dj) =
∑
q∈Di

∑
r∈Dj

P [q, r] log
P [q, r]

P [q]× P [r]
(8)

HEFT-Stream adopts a landmark windowing approach.
Incoming data is stored in a buffer with a predefined size. Next,
the matrix of symmetrical uncertainty values is computed to
select the most relevant feature subset. In the end of a chunk,
this subset is stored and the process is repeated in the following
chunk. Whenever two consecutive subsets are different, HEFT-
Stream postulates that a feature drift has occurred.

Additionally, in order to boost the ensemble overall ac-
curacy, HEFT-Stream assumes that diversity among member
classifiers, therefore, encompasses an online bagging [33]
approach to promote it. Originally, a bagging ensemble is
composed of base classifier each of which are trained with
bootstraps of data (as discussed in Sec. IV-C).

Classification of each instance is performed through a
weighted combination of member classifiers classifications.
Each member classifier k is associated to a weight wk (stated
in Eq. 9) which is an accumulated error from its creation time
to the current time. The weight wk is stated in Eq. 9 where
α is a padding value which was originally empirically set to
0.001 and Ek is the accumulative error of a member classifier
k.

wk =
1

(Ek + α)
×

[
K∑

m=1

(Em + α)−1

]
(9)

Finally, at the end of every chunk, the classifier with the
biggest value of Ek is then replaced by a new classifier. This
new classifier is then associated with the feature set selected
by FCBF and its type corresponds to the most accurate expert
of the ensemble.

Although HEFT-Stream is stated as a generic ensemble
capable of using any kind of base classification learners,
authors show results only for a combination of a Updatable
Naı̈ve Bayes and VFDT algorithms.

V. DISCUSSION

Determining the most discriminative subset of features of
data streams streams is not straightforward. In this paper we
presented existing work that performs feature drift adaptation
in both explicit and implicit fashions. However, there exists
a variety of questions that are still unanswered and pose
challenges for the streaming research community.

Inductive tree learning is one of the most commonly used
approach for classifying data streams. As discussed in the pre-
vious section, very few trees regard the possibility of changes
in the underlying distribution of data, therefore introduce some
kind of pruning strategy into tree evolution. Nevertheless, such
strategies are based on equal-sized windowing techniques,
a difficult parameter to be set that varies accordingly to
the stream domain. The same can be said for decision rule
learning. Algorithms like Facil and VFDR do not encompass
strategies for adapting its model to drifts in data.

Through randomness and combinatorics, the latter ap-
proaches can be combined into ensembles to boost accuracy
and allow implicit drift adaptation. Nevertheless, one must
have in mind that training and maintaining an ensemble is not
only computationally costly, but must embed specific diversity
induction and voting schemes.

Focusing on randomness, Streaming Random Forests and
Random Rules create ensembles and each of its experts are
associated with a random subset of features D′. Arriving
instances are then used to train experts after their conversion
to D′. Due to randomness, it is necessary that experts are
allocated with D′ that cover diverse areas of the feature subsets
space. The assumption is that at least one of the experts is
associated with D′ ⊇ D∗. By associating to each expert a
dynamic weight that grows and shrinks accordingly to correct
and misclassified instances, the ensemble implicitly adapts to
feature drifts since experts with the most discriminative subsets
will present higher accuracy rates.

Analogously, the same algorithms can form ensembles
by exploring combinatorics. Assuming a feature set D with

|D| = M , it is necessary to create an ensemble with
∑M

i=1

(
M
i

)
experts. Again, by associating each expert a subset D′ and a
dynamic weight, the one with D′ = D∗ will present higher
accuracy rates and will overcome other experts’ votes in
predictions. Nevertheless, by exploring combinatorics the size
of the ensemble becomes intractable as the size of the expert
grows factorially with M .

105710581058

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

Finally, approaches like HEFT-Stream [17] assume that the
most discriminative subset of features can be computed by
filters on disjoint chunks of instances. The major limitation
of this windowing approach is how to determine the size of
these windows, which directly affects the learning process.
Small windows allow quicker recognition of possible changes
in the chosen subset of features, however, this approach may
lead to the detection of false changes if the stream is noisy.
Conversely, bigger windows enable a larger amount of data to
work on, yet fails on quickly detecting changes in features’
relevances.

Another open question regards how each classifier deals
with changes in this chosen discriminative subset. For example,
if a change is detected in a decision tree or decision rule
learning algorithm, it is possible to adapt the model learned
in order to avoid full model reset (as CVFDT), however, the
same cannot be said for other types of learners.

An interesting and so far unexplored approach is the usage
of distribution estimators (e.g. Exponentially Weighted Moving
Average [44]) and change detectors (e.g. DDM [43], EDDM
[45], ADWIN [29] and Page-Hinkley’s test [46]) to keep track
of the most discriminant subset of features in streams. With
these approaches, there is no need to unnecessarily discard the
model learned periodically, but only when changes are detected
with statistical confidence.

Therefore, open research topics include the development
of techniques that constantly verify the relevance of features
as instances arrive in adaptive and incremental fashion. Per-
forming such verification as data arrives and independently of
window sizes is important since it allows faster recognition
of feature drifts and enhances classifier’s overall accuracy and
processing time.

VI. CONCLUDING REMARKS

This paper presented, formalized and exemplified one
uncommonly addressed characteristic of data streams: feature
drifts. We surveyed algorithms that perform feature selection
during the stream learning, either aiming or not at feature
drifts. Besides serving as an introduction into the research area
of dynamic feature selection for data streams, we expect that
this paper helps to position new adaptive learning techniques
and applications to which these apply.

As discussed in this paper, there are few algorithms that
account for feature drifts. Through randomness and combina-
torics, implicit approaches adapt to feature drifts by assign-
ing different feature subsets and dynamic weights to experts
of an ensemble. These approaches’ rationale is that experts
associated with most discriminative subsets of features will
present higher accuracy rates, therefore, higher weights in
voting. During feature drifts, experts with the worst subsets
of features will misclassify more instances, therefore will
present lower weights, while experts with better subsets will
dominate voting due to better subsets. The major limitation of
the randomness approaches reside in the sub optimality of the
associated subsets of features, since it is possible that no expert
is associated with the most discriminative subset of features
D∗. Conversely, combinatorics approaches can be posed as
wrappers where the several subsets of features are explored
in parallel. The major drawback of this approach is that the

amount of possible subsets grows factorially, therefore, can be
applied only in low dimensional data streams.

Through windowing, CVFDT and HEFT-Stream assume
that drifts can be detected by dividing the stream into equal
sized chunks, in a naı̈ve approach. Handling streams by adopt-
ing predefined sized chunks is problematic since the decision
of the chunk size is a tradeoff without solution [10]: a small
size implies in a window that reflects the current distribution
of data, while a large size enables a larger amount of data to
work on, important in periods of stability.

Finally, we conclude that performing dynamic feature se-
lection in data streams has not received the proper attention
in the current research scenario. Studying how to perform dy-
namic feature selection as streams progress allows the tracking
of the best subset of features in the stream. This is expected
to enhance classifiers’ accuracy and diminish processing time
even with variations of their relevance, a current open and
progressing research challenge.

REFERENCES

[1] A. Bifet, J. Read, I. Zliobaite, B. Pfahringer, and G. Holmes, “Pitfalls
in benchmarking data stream classification and how to avoid them,” in
ECML/PKDD (1), 2013, pp. 465–479.

[2] P. Kosina and J. a. Gama, “Very fast decision rules for
multi-class problems,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing, ser. SAC ’12. New
York, NY, USA: ACM, 2012, pp. 795–800. [Online]. Available:
http://doi.acm.org/10.1145/2245276.2245431

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, ser.
VLDB ’03. VLDB Endowment, 2003, pp. 81–92. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1315451.1315460

[4] J. P. Barddal, H. M. Gomes, and F. Enembreck, “SNCStream: A social
network-based data stream clustering algorithm,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing (SAC), ser. SAC
2015. ACM, April 2015.

[5] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in SDM, 2006, pp. 328–339.

[6] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The clustree:
Indexing micro-clusters for anytime stream mining,” Knowl. Inf.
Syst., vol. 29, no. 2, pp. 249–272, Nov. 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10115-010-0342-8

[7] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2523813

[8] A. Tsymbal, “The problem of concept drift: definitions and related
work,” The University of Dublin, Trinity College, Department of
Computer Science, Dublin, Ireland, Tech. Rep. TCD-CS-2004-15, 2004.

[9] K. Naidu, A. Dhenge, and K. Wankhade, “Feature selection
algorithm for improving the performance of classification: A survey,”
in Proceedings of the 2014 Fourth International Conference on
Communication Systems and Network Technologies, ser. CSNT ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 468–471.
[Online]. Available: http://dx.doi.org/10.1109/CSNT.2014.99

[10] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining
from Evolving Data Streams, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2010, vol. 207. [Online]. Available:
http://www.booksonline.iospress.nl/Content/View.aspx?piid=14470

[11] J. Gama, Knowledge Discovery from Data Streams, 1st ed. Chapman
& Hall/CRC, 2010.

[12] H. Abdulsalam, D. Skillicorn, and P. Martin, “Streaming random
forests,” in Database Engineering and Applications Symposium, 2007.
IDEAS 2007. 11th International, Sept 2007, pp. 225–232.

105810591059

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

[13] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Classification
using streaming random forests,” IEEE Trans. on Knowl. and Data
Eng., vol. 23, no. 1, pp. 22–36, Jan. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2010.36

[14] M. Gupta, J. Gao, C. Aggarwal, and J. Han, “Outlier detection for
temporal data,” Synthesis Lectures on Data Mining and Knowledge
Discovery, vol. 5, no. 1, pp. 1–129, 2014. [Online]. Available:
http://dx.doi.org/10.2200/S00573ED1V01Y201403DMK008

[15] H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data stream
clustering and classification,” Knowledge and Information Systems, pp.
1–35, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10115-014-
0808-1

[16] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d.
Carvalho, and J. a. Gama, “Data stream clustering: A survey,” ACM
Comput. Surv., vol. 46, no. 1, pp. 13:1–13:31, Jul. 2013.

[17] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan, “Heterogeneous
ensemble for feature drifts in data streams,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science,
P.-N. Tan, S. Chawla, C. Ho, and J. Bailey, Eds. Springer
Berlin Heidelberg, 2012, vol. 7302, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30220-6 1

[18] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Dynamic feature space
and incremental feature selection for the classification of textual data
streams,” in in ECML/PKDD-2006 International Workshop on Knowl-
edge Discovery from Data Streams. 2006. Springer Verlag, 2006, p.
107.

[19] J. P. Barddal, H. M. Gomes, and F. Enembreck, “SFNClassifier: A scale-
free social network method to handle concept drift,” in Proceedings of
the 29th Annual ACM Symposium on Applied Computing (SAC), ser.
SAC 2014. ACM, March 2014.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[21] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[22] F. J. Ferrer-Troyano, J. S. Aguilar-Ruiz, and J. C. R. Santos,
“Incremental rule learning and border examples selection from
numerical data streams,” J. UCS, vol. 11, no. 8, pp. 1426–1439, 2005.
[Online]. Available: http://dx.doi.org/10.3217/jucs-011-08-1426

[23] J. Gama and P. Kosina, “Learning decision rules from data
streams,” in IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 2011, pp. 1255–1260. [Online]. Available:
http://ijcai.org/papers11/Papers/IJCAI11-213.pdf

[24] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’01.
New York, NY, USA: ACM, 2001, pp. 97–106. [Online]. Available:
http://doi.acm.org/10.1145/502512.502529

[25] E. Almeida, P. Kosina, and J. Gama, “Random rules from
data streams,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, Coimbra, Portugal,
March 18-22, 2013, 2013, pp. 813–814. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480518

[26] M. Sugiyama and Q. Yang, Eds., Proceedings of the 2nd Asian
Conference on Machine Learning, ACML 2010, Tokyo, Japan,
November 8-10, 2010, ser. JMLR Proceedings, vol. 13. JMLR.org,
2010. [Online]. Available: http://jmlr.org/proceedings/papers/v13/

[27] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[28] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Association,
vol. 58, no. 301, pp. 13–30, March 1963. [Online]. Available:
http://www.jstor.org/stable/2282952?

[29] A. Bifet and R. Gavaldà, “Learning from time-changing data with

adaptive windowing,” in In SIAM International Conference on Data
Mining, 2007.

[30] R. L. Rivest, “Learning decision lists,” Mach. Learn.,
vol. 2, no. 3, pp. 229–246, Nov. 1987. [Online]. Available:
http://dx.doi.org/10.1023/A:1022607331053

[31] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavald, “Improving
adaptive bagging methods for evolving data streams,” in Advances in
Machine Learning, ser. Lecture Notes in Computer Science, Z.-H.
Zhou and T. Washio, Eds. Springer Berlin Heidelberg, 2009, vol.
5828, pp. 23–37. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-05224-8 4

[32] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging
for evolving data streams,” in Machine Learning and Knowledge
Discovery in Databases, ser. Lecture Notes in Computer Science,
J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, Eds. Springer
Berlin Heidelberg, 2010, vol. 6321, pp. 135–150. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15880-3 15

[33] N. Oza, “Online bagging and boosting,” in Systems, Man and Cyber-
netics, 2005 IEEE International Conference on, vol. 3, Oct 2005, pp.
2340–2345 Vol. 3.

[34] L. I. Kuncheva and W. J. Faithfull, “PCA feature extraction for change
detection in multidimensional unlabelled data,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 1, pp. 69–80, 2014.

[35] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24,
no. 2, pp. 123–140, Aug. 1996. [Online]. Available:
http://dx.doi.org/10.1023/A:1018054314350

[36] ——, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001. [Online]. Available:
http://dx.doi.org/10.1023/A%3A1010933404324

[37] M. Denil, D. Matheson, and N. de Freitas.

[38] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” J. Mach. Learn.
Res., vol. 8, pp. 2755–2790, Dec. 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1314498.1390333

[39] D. H. Wolpert, “Stacked generalization,” Neural Networks,
vol. 5, no. 2, pp. 241–259, 1992. [Online]. Available:
http://dx.doi.org/10.1016/S0893-6080(05)80023-1

[40] D. Barbará, “Requirements for clustering data streams,” SIGKDD
Explor. Newsl., vol. 3, no. 2, pp. 23–27, Jan. 2002. [Online]. Available:
http://doi.acm.org/10.1145/507515.507519

[41] N. Jiang and L. Gruenwald, “Cfi-stream: Mining closed frequent
itemsets in data streams,” in Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’06. New York, NY, USA: ACM, 2006, pp. 592–597.
[Online]. Available: http://doi.acm.org/10.1145/1150402.1150473

[42] A. Metwally, D. Agrawal, and A. El Abbadi, “Duplicate detection
in click streams,” in Proceedings of the 14th International
Conference on World Wide Web, ser. WWW ’05. New
York, NY, USA: ACM, 2005, pp. 12–21. [Online]. Available:
http://doi.acm.org/10.1145/1060745.1060753

[43] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence SBIA 2004, ser.
Lecture Notes in Computer Science, A. Bazzan and S. Labidi, Eds.
Springer Berlin Heidelberg, 2004, vol. 3171, pp. 286–295. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-28645-5 29

[44] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponen-
tially Weighted Moving Average Charts for Detecting Concept Drift,”
ArXiv e-prints, Dec. 2012.

[45] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá,
and R. Morales-Bueno, “Early drift detection method,” in In Fourth
International Workshop on Knowledge Discovery from Data Streams,
2006.

[46] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi, “Test of page-hinckley,
an approach for fault detection in an agro-alimentary production sys-
tem,” in Control Conference, 2004. 5th Asian, vol. 2, 2004, pp. 815–818
Vol.2.

105910601060

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:58:25 UTC from IEEE Xplore. Restrictions apply.

