UKIRF: An Item Rejection Framework for
Improving Negative Items Sampling in
One-Class Collaborative Filtering

Antonio David Viniski, Jean Paul Barddal, and Alceu de Souza Britto Jr.

Graduate Program in Informatics (PPGla)
Pontificia Universidade Catdlica do Parand (PUCPR)
Rua Imaculada Conceigao, 1155
Curitiba, Parand, Brazil
{adviniski, jean.barddal,alceu}@ppgia.pucpr.br

Abstract. Collaborative Filtering (CF) is one of the most successful
techniques in recommender systems. Most CF scenarios depict positive-
only implicit feedback, which means that negative feedback is unavail-
able. Therefore, One-Class Collaborative Filtering (OCCF) techniques
have been tailored to tackling these scenarios. Nonetheless, several OCCF
models still require negative observations during training, and thus, a
popular approach is to consider randomly selected unknown relationships
as negative. This work brings forward a novel and non-random approach
for selecting negative items called Unknown Item Rejection Framework
(UKIRF). More specifically, we instantiate UKIRF using similarity ap-
proaches, i.e., TF-IDF and Cosine, to reject items similar to those a user
interacted with. We apply UKIRF to different OCCF models in differ-
ent datasets and show that it improves the recall rates up to 24% when
compared to random sampling.

Keywords: Collaborative Recommendations Systems - Implicit Feed-
back - Negative Sampling - Similarity metrics

1 Introduction

In recent years, recommendation systems have become widely used by compa-
nies like Amazon, Netflix, and Spotify are have been proven to be effective in
recommending personalized items to users, boosting businesses, and facilitating
decision-making processes [5,17]. Collaborative filtering, which aims at predict-
ing users’ preferences towards items based on historical user feedback, is con-
sidered a central technique in recommender systems [13]. The users’ feedback
is expressed explicitly or implicitly to reflect the user’s preferences for items.
Explicit feedback is often represented by a numerical grade that describes differ-
ent preference levels (such as a 1-5 scale) [6,7]. Nonetheless, collecting explicit
feedback from users is difficult, complex, costly, and even unfeasible, depending
on the scenario. Therefore, in many real situations, the feedback implicitly ex-
pressed by users’ behavior (like clicks, bookmarks, and purchases) is easier to
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obtain and attracted increasing interest from researchers and practitioners [7].
Despite the easiness of data acquisition, implicit feedback scenarios have spe-
cific problems, such as negative feedback’s unavailability. The absence of user
negative feedback is referred to as One-Class Collaborative Filtering (OCCF),
or positive-only feedback [6]. Despite the lack of negative feedback, algorithms
tailored for OCCF require strategies to assume the unknown relations between
users and items as negative [15]. There are two ways to incorporate unknown
inputs into the model’s training: (i) consider that all missing interactions be-
tween users and items are negatives, or (ii) select a sub-sample of these missing
interactions as negative. Following the former strategy is computationally pro-
hibitive, and thus, several proposals follow the latter approach as interactions
are randomly sampled and assumed as negative. We argue that there is a need
for methods that perform negative interaction sampling, considering the data
characteristics instead of randomly.

In this work, we propose two methods for rejection, i.e., removing items
from the missing entries per user by calculating similarity measures between
items in the training interactions. These methods use positive interactions to
find patterns in user behavior and reject unlabeled interactions that are likely
to be relevant. The first method uses Cosine similarity [14,4] in the interaction
matrix, while the second combines Cosine similarity with a TF-IDF variant [1].

The paper is organized as follows. Section 2.1 introduces the one-class collab-
orative filtering task. Section 2.2 introduces related works that target improving
the results obtained in OCCF scenarios. Section 3 presents the proposed frame-
work for negative items rejection. Section 4 discusses the experiments performed
alongside their analysis. Finally, Section 6 concludes this paper and states envi-
sioned future works.

2 Related Work

This section introduces the research problem and reviews popular approaches
designed for implicit positive-only scenarios that sample negative examples for
training recommender models. In Section 2.1 we present the One-class collabora-
tive filtering (OCCF) challenge and formalize the problem definition. Section 2.2
shows four popular recommender models that treat the unobserved interactions
as negative ones.

2.1 One-Class Collaborative Filtering

One-class collaborative filtering (OCCF) predicts users’ preferences given past
positive feedback available in a dataset [5]. OCCF has characteristics that differ-
entiate it from other tasks in recommendation systems. First, negative feedback
lacks, as it is cumbersome to state with certainty which items a user dislikes. For
instance, the lack of interaction is ambiguous as the user may indeed dislike an
item or be unaware of it. Next, implicit datasets are highly sparse as few inter-
actions are known, and most of the user-item relationship matrix corresponds to
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missing data. Furthermore, OCCF scenarios are noisy, as an interaction between
a user and an item does not mean that the user prefers it. There is no explicit
feedback from the user w.r.t. one’s satisfaction after such interaction. Finally,
implicit ratings expressed numerically indicate confidence and do not represent
users’ preferences as with explicit ratings, yet, it describes the frequency of in-
teraction, e.g., how many times a user listens to a song, how frequently a user
purchases an item, and so forth.

Existing solutions for OCCF differ in how they handle unobserved data. Al-
though the one-class collaborative filtering is less visited than the multi-class
setting, some approaches have been proposed in the literature to deal with miss-
ing (unknown) items [11]. According to how the unlabeled data is used, existing
methods to OCCF can be classified into two categories [11], i.e., whole-data
based approaches [6, 15]; and sampling based approaches [8,18,3,15]. Both ap-
proaches share challenges. When considering all the missing entries as negative,
two constraints are relevant. First, as most of the training instances are negative,
the class imbalance problem reduces the positive class’s predictive ability. Sec-
ond, one must deal with the possibility of introducing false negative examples.
Besides, suppose we randomly sample unobserved interactions. Consequently, it
is challenging to identify representative negative examples as all of the nega-
tive and missing positive interactions are mixed and cannot be distinguished [6].
Conversely, if the sampling method considers the dataset characteristics during
negative sampling, we have a smaller probability of selecting false negatives.

Notation-wise, we denote R,,x, to be an interaction matrix, where m and n
represent the number of users and items, respectively. Therefore, OCCF methods
assign a score 7,; for each w-th and i-th user-item pair in R,,xn, such that
u € U and i € I. The value of r,; € {0,1} denotes the positive or unobserved
interaction of the u-th user on i-th, where r,; is an element of R. Consequently,
wi={iel|ry=1}andw, ={i €I |ry, =0} denote the sets of positive
and unobserved items for the u-th user. Our goal is to perform negative item
sampling from w;, so that items that tend to be irrelevant for the u-th user given
the characteristics of the positive items w; are dropped.

2.2 OCCF Techniques

We can categorize the approaches designed for OCCF scenarios according to
how they learn the relevance order. Most algorithms exploiting OCCF focus on
homogeneous positive feedback with point-wise [3], pair-wise [8], and list-wise [9]
preference assumptions. Point-wise approaches regard user ratings as categorical
labels or numerical values and learn the relevance scores of missing data directly
[11]. The pair-wise approaches try to capture the preference order between miss-
ing data, correctly identifying the positive/negative item in each pair [18,11].
On the other hand, an individual training example is an entire list of items in a
list-wise approach, rather than individual items or item pairs. However, due to
their difficulty modeling the inter-list loss and inefliciency on large-scale datasets,
list-wise CF approaches are not widely used compared to point-wise and pair-
wise in ranking-oriented collaborative filtering [18]. Consequently, for further
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experimentation, we select the pair-wise model Bayesian Personalized Ranking
for Matrix Factorization (BPRMF) [8], and the point-wise models proposed in
the Neural Collaborative Framework (NCF): Generalized Matrix Factorization
(GMF), Multi-layer Perceptron recommender (MLP) and Neural Matrix Factor-
ization (NeuMF) [3].

Bayesian Personalized Ranking for Matrix Factorization (BPRMF).
BPRMF [8] is a popular familiar pair-wise method. Instead of only using the
user-item interactions, for each interaction (u;i), BPRMF selects a number of
randomly selected items (j) to be used as negative items. BPR optimization
decomposes triplets in the (u;i;j) format using the difference of the predictions
for the u-th user w.r.t. items i (Ry; = A, - BT) and j (R, = Ay- BY'), obtaining
the instance prediction: Ruij = Rm — Ruj. The prediction error e = |1 — Ru”|
is then used to update the u-th user (A4,), the i-th and j-th item (B; and B;)
latent factors.

Neural Collaborative Framework (NCF). NCF is a deep neural net-
work recommender framework composed of three recommender models: GMF,
MLP, and NeuMF [3]. The NCF framework presents a probabilistic approach
for learning the point-wise models that pay special attention to implicit data’s
binary property, i.e., training models using positive and negative examples. To
endow the probabilistic explanation, NCF models constrain the output #,; in the
range of [0, 1] using a probabilistic function in the output layer. Regarding neg-
ative instances, the authors suggest uniformly sampling them from unobserved
interactions in each iteration.

Generalized Matrix Factorization (GMF). To represent the latent fea-
tures of users and items, GMF uses embedding layers. Each embedding layer
is a fully connected layer that projects users’ sparse representation and items
in a dense vector. Thus, projecting the vector to the output layer we obtained the
probability prediction of user u interact with the item i: #,; = aout (hT (A4, © Bi)),
where a,,; and h denote the output activation function and edge weights of the
output layer, respectively.

Multi-layer Perceptron (MLP). Instead of the element-wise dot product
between latent factors like in GMF, MLP concatenates the user and item latent
features. The concatenated vector is fully connected with hidden layers to model
the collaborative filtering effect and learn the interaction between latent features
A, and B,. Therefore, the item prediction is achieved by 7,; = o (hT¢L (zL,l)),
where o, z;_1, and h” ¢, denote the activation function, the last hidden layer,
and the edge weights of the output layer, respectively.

Neural Matrix Factorization (NeuMF). NeuMF combines GMF and
MLP architectures. More specifically, it combines the linear and non-linear ker-
nels from GMF and MLP. Internally, NeuMF trains GMF and MLP with random
initializers until convergence. To provide more flexibility to the combined model,
NeuMF allows GMF and MLP to learn separated embedding and connects them
by concatenating their last hidden layer.
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3 Unknown Items Rejection Framework (UKIRF)

This section introduces the Unknown Items Rejection Framework (UKIRF) to
improve OCCF models’ performance. Our goal with this framework is to provide
a pre-processing step of a collaborative filtering recommendation process, thus
not requiring modifications in the recommender models.

Algorithm 1 describes UKIRF. To generate the items rejection, UKIRF uses
the interaction matrix R, the set of all users U and items I. As input, UKIRF
requires the number of items (N,) for rejection per user. Line 1 denotes the
rejection method function call, which identifies item-item relationships using
the interaction matrix R and stores these relationship data into the S similarity
matrix. Details on the rejection methods proposed are given in Section 3.1. Line
2 instantiates w; as an empty dictionary-like structure responsible for storing
the negative options for all users. The loop in lines 3 to 10 iterates over all users
uw € U, in which the positive items w; (line 4) are recovered, followed by the
unobserved w,, items per user. According to the number of positive observations
to the u-th user, the framework decides (line 6) whether to apply the unobserved
item rejection strategy or not. If |w;"| = 0 holds, i.e., the u-th user has no positive
interactions yet; the set of unobserved items (w;, ) is maintained. On the other
hand, if |w;| > 0, UKIRF uses the apply rejection function (line 7) to return
the list of items (w!)) that are the most similar w.r.t. to the items for which the
u-th user interacted with. The apply_rejection has as parameters the positive
items of user u-th (w;"), the rejection data returned by the rejection method
function, and an integer N, that denotes the number of items that shall be
rejected. Thus, the UKIRF removes from w;, the items stored in wi, (line 8).
Next, regardless of the rejection strategy chosen, the resulting w;, is stored in
wy (wy [u] = wy ), which corresponds to the negative options for all users (line 9).

Algorithm 1: Unknown Items Rejection Framework (UKIRF)

Data: Interaction Matrix R, set of all users U, set of all items I
Input: N,: number of items to be rejected

Output: wy
1 S <rejectionmethod(R) > Generating the item-item similarity data
2 wy < {} > Instantiate the dictionary to stores the negative options
3 foreach v € U do
4 wi —{iel|ry=1} > Recover all u-th user positive items
5 wy < {i€1]|ry =0} > Recover all u-th user unobserved items
6 if |w}| # 0 then
7 27, + apply_rejection(w;, S, N,) > Return the N, most similar
items
8 Wy — wy \ {2, > Remove N, items from w,,
9 wy [u] < wy
10 end

11 return wJT
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After rejecting unobserved items from the system’s active users, the framework
returns the dictionary containing all negative options per user in U (line 11).

3.1 Similarity-based Rejection Strategies

This section presents two rejection strategies that can be used in UKIRF: Cosine-
based rejection and UF-IIF rejection. These reflect the rejection method func-
tion in UKIRF, which receives as input the interaction matrix R.

Cosine Similarity approach: Among the existing similarity measures, the
cosine function, which is defined as the inner product of two vectors divided
by the product of their lengths [14], is the most popular and is widely used
similarity measure. Its calculation is efficient, especially for sparse vectors, as
only the non-zero dimensions are considered [4]. This characteristic is significant
in the OCCF scenarios given the sparsity present in the interaction matrix R.
Given two m-dimensional vectors ¥ and w0, where m is the number of users, the
Cosine similarity between them is calculated as follows:

. — n — —
Cosine (¥, W) = i}. ui = iz % X Wi (1)
NSNS
The Cosine approach applies the Cosine similarity function to all item-item (@,
W) pairs. As a result, the rejection method function returns the similarity
matrix S™*" where n is the number of items.

User frequency-inverse item frequency approach (UF-IIF). The User
frequency-inverse item frequency is a specialization of "Term frequency-inverse
document frequency’ (TF-IDF), one of the most commonly used term weighting
schemes in the information retrieval systems [1]. TF-IDF is a metric that mul-
tiplies the two quantities TF and IDF. TF provides the frequency of each term
in the document from the document collection. On the other hand, IDF can be
interpreted as the amount of information representing each term’s weight in the
document collection. Less frequent terms have higher IDF values. In this work,
we use TF-IDF to calculate the similarity between items. First, we assume that
the user is a “term” (UF), and the item is a “document” (IIF). Thus, instead
of calculating the similarity between documents, we obtain the similarity of the
items. In this sense, the formulation of UF and IIF measures are as follows:

S TR T S (”) | ufsiif = uf x iif
Zm fu,i lfu

where f, ; is the number of times the u-th user interacted with the i-th item,
Y Ju,i is the total number of users who interacted with the i-item, n is the
number of items present in the dataset, and if,, is the number of items the u-th
user interacted with. As the UF-IIF"*" matrix stores the weights of each user-
item pair, we use the Cosine function (Equation 1) to calculate the similarity
matrix S between all items.

Both Cosine and UF-IIF techniques result in a similarity matrix S that stores
the similarity between items in the recommender system. Therefore, both are




UKIRF: An Item Rejection Framework for Collaborative Filtering 7

Algorithm 2: Get a list of N, similar items to items in w;

Input: w;: positive items for an user u, S: similarity matrix between items,
N,: number of items to be rejected
Output: w.: a list of N, most similar items to items in w;"
1 Function apply rejection(w; ,S,N,.):
2 P+ D“Xb, such that a € wl and b € I, and dap = Sa,p > get a partial

similarity matrix with the weight vectors of items in w;

3 V> ko Prb > sum of similarities considering items in w;
4 Sort V' in ascending order

5 wy, Vi, such that (|V]| = N, <k < |V]|)
6 return w;,

7

End Function

used in the apply_rejection function given in Algorithm 2. It receives as input
all the positive observations of the u-th user (w;), the S matrix returned by the
rejection method function, and the number of items NV, the rejection approach
must reject. The first step (line 2) selects from the similarity matrix (S) a partial
matrix P that denotes the similarity values s, = Sq,5, such that a € w and
b € I. Next, line 3 generates a similarity vector V', which denotes the sum of
rows (a) weights for all items in the columns (b) of the partial similarity matrix
ZZ:O < Py . Line 4 sorts the similarity vector V' in ascending order. Finally,
line 5 stores in w], such items with the highest similarity values (w], represents
the return of the function apply_rejection).

4 Experimental Setup

4.1 Datasets

We test our proposed framework in three supermarket datasets (SMDI_original,
SMDI_500E and SMDI_200UE) and in the Movie Lens 100k dataset [2], such that
the last has been converted so that only ratings above 3.5 were considered pos-
itive. Table 1 presents the datasets characteristics. In this experimental setting,
we also propose approaches to define the number of rejected items (N,.). Regard-
ing that most real-world datasets have repeated interactions, we use the third
quartile (@3) and the superior limit (SL) on the number of interactions and
on the number of unique interactions per user to obtain N, values. Thus, we
have four alternatives to define the N, for each dataset, considering the unique
interactions (SLU and Q3U) and repeated interactions (SLT and Q3T'). Table
1 also shows the number of rejections (IV,) in each scenario.

4.2 Baselines

We compare our proposed rejection strategies with the most often used uniform
random sampling and test the generated sets of unobserved items in four rec-
ommender models: BPRMF, GMF, MLP, and NeuMF. For the recommender
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Table 1. Overview of the datasets used during experimentation.

N

Datasets Interactions Users Items Sparsity SLT SLU Q3T Q3U
SMDI _original 737893 9531 7141 99.57% 212 108 92 48
SMDI_500E 448791 9480 6933 99.59% 204 103 89 46
SMDI_200UE 447391 9472 6924 99.59% 204 103 89 46
Movie Lens 100k 21201 928 1172 98.05% 64 64 30 30

algorithms, we tested the following hyper-parameter values: learning rate €
[0.001,0.005,0.0001,0.0005], regularization rate € [0.01, 0.001, 0], latent factors €
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]. After
applying the rejection method, for each positive {u, i} user-item interaction, we
randomly sampled a number (from 1 to 10) of items from the previously filtered
subset of unknown items to serve as negative ones.

4.3 Assessment

For each dataset, we made a temporal split, i.e., the first 50% of the time period
were selected for training and the remaining 50% for testing. This temporal split
is relevant as the dataset exhibits timestamps. From the training set, 20% of
the instances were used for model validation. Thus, we use the validation loss to
monitor the convergence of the models [10].

Following the protocol proposed in [12], we express the accuracy of the models
using Recall@K, with K € {1,10}. The score, shown in Equation 2, measures
the average (on all users) of the proportion of recommended items that appear
among the top K of the ranked list [16], where |T'| is the test set size.

Recall@K = % > (hit@K (u, 1)) (2)
u,i€T

For each instance ((u,)) in the test set, we select a candidate list of 100
unknown items to user u, and the known item 7 is appended to this candidate
list. The candidate list is randomly sampled from the set of unknown items of
user u or from the optimized set of unknown items when considering the unknown
items’ rejection approaches. According to the recommender models’ scores, we
ranked and sorted the candidates in descending order. For each instance (u, 1),
hit@K (u,i) = 1 is said to happen when i is ranked amidst the top K items, and
hit@QK (u,i) = 0, otherwise.

We replicate each experiment 5 times in this work, so the results show the
average and standard deviation of recall values. The source code and datasets
used during experimentation are available at https://github.com/adviniski/
UKIRF.
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5 Results and Analysis

Table 2 depicts the results obtained in the supermarket and Movie-Lens 100k
datasets. We report the Recall@K (with K = [1,10]) obtained by each model
alongside the N, and NN, values that achieved the best results, such that the
former is the number of negative items per positive interaction, and the latter
represents the strategy for rejecting items.

For BPRMF, which selects (positive, negative) pairs per positive instance,
in the SDMI_original dataset (Table 2), the best results in comparison with
the random sampling were obtained by the Cosine removal method, with ten
negatives and SLT number of removals. We have an increase of 10.90% and 3.10%
to the Recall@1 and Recall@10 values, respectively. Considering the Recall@10,
the MLP model had superior performance, with a recall value of 73.4%, with
ten negatives items per positive item in the training phase. The results with
MLP increased 4.50% for Recall@10 in comparison to random sampling. The
MLP and NeuMF models presented the best results for Recall@1 values in the
original dataset, with an increase of 19.90% compared with the random sampling
(from 32.9% to 52.8%), both with ten negative items. On the other hand, GMF
presented inferior results when compared to MLP and NeuMF. GMF acquired
results close to BPRMF, however, with lower recall values.

Despite being more straightforward than UF-IIF, the Cosine function ob-
tained better results in all methods in the SDMI_original dataset, while the
UF-IIF acquired close results to those obtained with random sampling. As UF-
ITF also uses the Cosine similarity function, we expected close results to those
obtained when using only the Cosine function in the interaction matrix. These
results confirm the need for preprocessing approaches in the original supermar-
ket dataset, showing that the datasets’ noisy traits influence the models’ results.
Since UF-IIF generates weights to all user-item interactions before using the
Consine function, we expected close or better results to those obtained by Co-
sine. The SLT approach rejects more items and provided the best results with
the Cosine function.

In opposition to the previous dataset, in SDMI_500E, in which users with more
than 500 interactions are removed, the model GMF outperformed BPRMF. How-
ever, the increase in recall values obtained by the Cosine removal compared to
Random sampling for both methods was greater than those observed above.
Here the Recall@l and Recall@10 increased 16.70% and 3.80% for GMF and
14.30% and 2.10% for BPRMF. Besides, the MLP model presented better re-
sults for both recall measures. In this dataset, the UF-IIF rejection approach
obtained close results to those presented by the Cosine method. Considering
Recall@1, UF-IIF outperformed Cosine with recall values of 54.4% and 53.8%,
respectively. Comparing the MLP with random sampling, the UF-IIF negative
rejection approach provides an increase of 24.1% in the Recall@1 values (from
30.3% to 54.4%). Considering the number of negative items selected in the train-
ing phase, for UF-IIF, the best results were obtained with ten negative items in
Recall@1, while for Cosine were eight negative items. On the other hand, for the
Recall@10, the best results were found with 7 and 8 for Cosine and 6 and 5 for
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Table 2. Recall@K (%) values obtained by the recommender models with the differ-
ent sampling strategies in the all tested datasets. N, represents the number of negative
items that yielded the best results, and N, denotes the number of rejected items con-
sidering the approaches (SLT, SLU, Q3T, Q3U).

Random Cosine UF-IIF
Recall (%) Ng Recall (%) Ng N, Recall (%) Ny N,

Dataset: SMDI_original

Model Recall@K

BPRMF 1 24.4 £+ 0.0027 10 35.3 + 0.0020 10 SLT 27.0 £ 0.0034 9 SLT
10 48.6 £ 0.0055 10 51.7 + 0.0027 10 SLT 48.6 £ 0.0030 10 SLU

GMF 1 22.5 £ 0.0030 3 36.4 + 0.0057 1 SLT 25.9 £ 0.0034 2 SLT
10 46.5 £ 0.0028 3 50.4 + 0.0060 2 SLT 47.4 £+ 0.0056 2 SLT

MLP 1 32.9 £ 0.0023 3 52.8 + 0.0004 10 SLT 35.7 £ 0.0027 7 SLT
10 68.9 £+ 0.0021 10 73.4 + 0.0005 10 SLT 69.0 £ 0.0029 10 Q3T

NeuMF 1 32.9 £ 0.0035 2 52.8 + 0.0004 10 SLT 35.5 £ 0.0024 2 SLU
10 68.6 £ 0.0037 10 72.6 + 0.0013 4 SLT 68.7 £ 0.0048 9 SLU

Dataset: SMIDI_500E

BPRMF 1 21.5 £ 0.0038 10 35.8 + 0.0028 9 SLT 35.9 + 0.0034 8 SLT
10 45.7 £ 0.0040 10 48.6 + 0.0034 9 SLT 48.5 £+ 0.0036 8 SLT

CMF 1 20.8 £ 0.0030 2 37.5 + 0.0027 10 SLT 37.2 £ 0.0022 8 SLT
10 46.6 £ 0.0026 6 50.4 + 0.0034 10 SLT 50.2 £ 0.0033 8 SLT

MLP 1 30.3 £ 0.0033 10 53.8 & 0.0023 8 SLT 54.4 + 0.0024 10 SLT
10 67.8 £ 0.0011 9 72.2 + 0.0015 7 SLT 72.2 + 0.0008 6 SLT

NeuMF 1 30.0 £ 0.0021 10 52.6 &+ 0.0008 7 SLT 52.8 + 0.0008 10 SLT
10 67.1 £ 0.0018 10 71.9 + 0.0017 8 SLT 71.9 4+ 0.0026 10 SLT

Dataset: SMIDI_200UE

BPRMF 1 21.6 £+ 0.0022 10 36.3 £+ 0.0030 10 SLT 36.0 & 0.0018 9 SLT
10 46.0 £ 0.0051 9 49.4 + 0.0036 10 SLT 48.9 £+ 0.0023 9 SLT

GMF 1 20.8 £+ 0.0037 10 87.1 £+ 0.0020 10 SLT 37.1 + 0.0021 10 SLT
10 46.7 £ 0.0046 6 50.3 + 0.0073 9 SLT 49.9 £+ 0.0061 7 SLT

MLP 1 30.3 £ 0.0019 9 53.9 £ 0.0011 9 SLT 54.3 + 0.0016 10 SLT
10 67.8 £ 0.0013 10 72.3 + 0.0011 5 SLT 72.3 + 0.0007 6 SLT

NeuMF 1 30.2 £ 0.0022 3 53.9 £ 0.0016 10 SLT 54.2 + 0.0022 10 SLT
10 67.8 £ 0.0011 9 72.3 + 0.0008 9 SLT 72.3 + 0.0012 5 SLT

Dataset: Movie-Lens 100k

BPRMF 1 2.6 £ 0.0066 10 3.6 & 0.0070 8 SLU 3.7 £+ 0.0084 8 SLU
10 14.7 + 0.0110 10 15.5 £+ 0.0130 8 Q3T 15.4 4+ 0.0128 8 SLU

GMF 1 5.0 £ 0.0000 10 16.8 + 0.0000 10 SLU 16.2 £ 0.0068 9 SLT
10 26.3 £+ 0.0104 8 33.7 + 0.0000 10 SLU 33.7 4+ 0.0134 9 SLT

MLP 1 7.8 £0.0061 8 27.4 4 0.0058 8 SLU 28.2 + 0.0054 9 SLU
10 43.3 £ 0.0022 9 55.5 + 0.0031 8 SLT 55.5 + 0.0038 10 SLT

NeuMF 1 6.8 &+ 0.0079 7 20.7 £ 0.0965 10 SLT 19.2 4+ 0.1171 10 SLU

10 39.7 £ 0.0157 9 53.7 £ 0.0051 10 SLT 54.2 + 0.0039 10 SLT

UF-IIF. For both Cosine and UF-IIF, the SLT approach to select the number of
rejected items was better than others in SDMI_500E.

The results of the two preprocessed datasets are very close. Still, if we had
to choose one of the preprocessing approaches, we could see in the results Table
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2 that for most of the recommender models, the SDMI_200UE dataset provided
better results. In this dataset, we removed users with more than 200 unique
(distinct items) interactions, which represented supermarket cashier operators.

In the three datasets analyzed, we found the most significant differences
between the results of the rejection methods and the random sampling in the
first top position (Recall@1). This means that the test dataset items were ranked
in the top 1 position more effectively using the rejection methods than using
random sampling without any rejection of unknown items. The MLP model
presents the best increase in the Recall@1 value (24.1%) from the Random to
the UF-IIF approach, considering the SDMI_500E dataset. For the SDMI_200UE
dataset, both MLP and NeuMF increased Recall@l values by 24% using the
UF-IIF rejection method.

Finally, the results of the recommendation models obtained in the Movie
Lens 100k dataset, also presented in Table 2, showed similar behavior to those
obtained in supermarket datasets. We can see the effectiveness of the Cosine and
UF-ITF methods compared to the Random approach, which showed an increase
of 19.60% and 20.40% in Recall@1 values, respectively, for the MLP model.

6 Conclusion

This paper has shown how to increase the goodness of implicit recommenda-
tion models via the appropriate selection of negative items during the training
phase. The motivation is that random sampling is insufficient and results in
non-informative updates in the model’s parameters. We propose a framework
for rejecting potentially relevant items to users so that these are not assumed as
negative. We used Cosine similarity to find similarity between items with that
user interacted with either in the interaction matrix or in the user frequency-
inverse item frequency (UF-IIF) matrix. We test our approaches in real-world
datasets and provide the results obtained when it is coupled with four recom-
mendation models (BPRMF, GMF, NeuMF, and MLP). Among the negative
item rejection strategies, Cosine and UF-IIF obtained better results than ran-
dom sampling, increasing Recall@1 values by up to 24%.

In future works, we plan to investigate other similarity metrics to quantify
the relationship between items. Furthermore, we envision testing recommender
models that are not built on matrix factorization to check how negative sampling
affects their efficiency.
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