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Abstract—Data stream mining is an emerging topic in machine
learning that targets the creation and update of predictive models
over time as new data becomes available. Regarding existing
works, classification is the most widely tackled task, which leaves
regression nearly untouched. In this paper, the focus relies on
ensemble learning for data stream regression, more specifically
on vertical and horizontal data partitioning techniques. The goal
is to determine whether and under which conditions partitioning
can lessen the error rates of different types of learners in the data
stream regression task. The proposed method combines vertical
and horizontal partitioning, and it is compared with and against
different types of learners and existing ensembles.

Index Terms—data stream mining, regression, bagging, ran-
dom subspaces

I. INTRODUCTION

Data stream mining is an emerging topic in machine learn-
ing. In practice, data stream mining follows the traditional
techniques in machine learning, including, for instance: classi-
fication, regression, clustering, recommendation systems, and
outlier detection; yet, in contrast to the traditional learning
schemes, the learning process occurs over time as new data
becomes available. Every year new techniques for data stream
mining are presented in major conferences and journals to (i)
reduce prediction errors, (ii) tackle high-dimensional scenar-
ios, or even (iii) propose speedups and memory consumption
improvements to existing methods. For instance, the work
of [1] proposed a method for learning decision trees from
data streams, the so-called Hoeffding trees, whereas in [2]
authors proposed a scheme for rule learning also for streaming
settings. Next, authors in [3] showed how traditional bagging
and boosting methods could be adapted for data streams,
later followed by the work of [4], where the online bagging
method is improved with higher resampling rates and error-
correcting codes. Another relevant state-of-the-art approach is
the Adaptive Random Forest, proposed in [5], where authors
showed how an ensemble of randomized Hoeffding Trees
could achieve higher accuracy rates by combining resampling,
drift detectors, and both horizontal (similarly to the afore-
mentioned leveraging bagging method) and vertical (random
subspaces at the time of tree split) data partitioning. Never-
theless, most of these techniques focus on the classification
task, thus leaving regression nearly overlooked. Regression
tasks include, for instance, stock market prediction, temper-
ature and precipitation forecasts, and household electricity

consumption prediction. Additionally, the data distribution in
each of the scenarios mentioned above is expected to change
over time, thus giving rise to a phenomenon named concept
drift. In this paper, the target is ensemble learning for data
stream regression, more specifically on vertical and horizontal
partitioning techniques. The goal is to determine whether
and under which conditions partitioning can lessen the error
rates of different types of learners in the data stream task.
The proposed method that combines vertical and horizontal
partitioning is then compared with and to different types of
learners and existing ensembles that also promote diversity
using data partitioning.

This paper is divided as follows. Section II describes the
data stream regression task, followed by a discussion on
related works given in Section III. Sections IV and V describe
the horizontal and vertical partitioning techniques, followed by
a discussion on drift detectors provided in Section VI. Later, a
proposal that combines drift detection, horizontal and vertical
partitioning is given in Section VII, followed by its assessment
in Section VIII. Finally, Section IX concludes this work and
renders topics for upcoming work.

II. DATA STREAM REGRESSION

Data stream mining has been gathering an impressive
amount of effort of both researchers and practitioners due
to the swiftly increasing number of data made available by
different sources. Nevertheless, the effort put on data stream
classification left the regression task barely untouched. In
this paper, the target is data stream regression, which aims
at incrementally learning and updating a continuous value
from a set of features. Examples of data stream regression
include, for instance, stock market prediction, temperature, and
precipitation forecasts, and household electricity consumption
prediction. More formally, we assume S = [(~xt, yt)]

t→∞
t=0 to be

a potentially unbounded data stream providing instances in the
(~xt, yt) format, where ~x is a d-dimensional vector of values
representing the values of the features, y ∈ R is the outcome
to be predicted, and t is the timestamp. In regression, the goal
is to iteratively learn a predictive model h : ~x → y as new
labeled instances become available, whilst decreasing the loss
obtained between the ground-truth values yt and the respective
predictions h(~xt) = ŷt.
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The traditional approach for learning and validating data
stream learners is the test-then-train scheme, where one works
under the assumption that yt becomes available before ~xt+1

arrives. Even though the assumption mentioned above does
not hold in a variety of scenarios, it is the most used in the
area and is also followed in the assessment of the proposed
method.

When learning from data streams, one must also assume that
the underlying data distribution is non-stationary, meaning that
concept drifts are expected to occur over time. The underlying
concept C of a stream is the probability estimate we have per
outcome y ∈ Y w.r.t. the available features and values ~x [6]:

C = P [Y |~x] (1)

Given S, instances will be labeled according to the current
concept Ct. If between two timestamps ti and tj > ti it
follows that Cti 6= Ctj , then we have a concept drift. Another
important categorization for concept drifts regards their length:
if Cti 6= Cti+1 the drift is said to be abrupt, while if
Cti 6= Cti+∆ with ∆ > 1 occurs, the drift is called gradual.
It is also possible to have continuous drifts, and these occur
when ∀ti, Cti 6= Cti+1 holds, which means that the concept
is continuously drifting. In this paper, drifts are synthesized
using the sigmoidal approach proposed in the Massive Online
Analysis (MOA) framework [7].

III. RELATED WORK

Regression rules are one of the main representatives of data
stream regression. By far, the most used algorithm is Adaptive
Model Rules (AMRules) [2]. AMRules incrementally learns
both ordered and unordered rule set from data streams. To
detect and adapt to concept drifts, each rule is associated
with a Page-Hinkley (PHT) drift detector [8], which prunes
the rule set given changes in the incoming data. Another
popular choice for data stream regression is the Fast and
Incremental Model Trees with Drift Detection (FIMT-DD) [9],
which learns a model tree for regression as new training data
becomes available. In contrast to AMRules, FIMT-DD uses
the PHT drift detection mechanism to identify changes at
split nodes of the tree and replaces them whenever a drift
is flagged. Similarly, Online Option Trees for Regression
(ORTO) [10] also grow trees incrementally with the arrival
of instances, yet, they also introduce “option” nodes, which
allow an instance to follow all the branches available in a
split node. FIMT-DD trees are also at the core of state-of-the-
art methods for data stream regression, such as the Adaptive
Random Forest for Regression (ARFREG) [11], which adapts
the process of learning randomized decision model trees from
the Adaptive Random Forest tailored for classification [5].
Similar to our approach, both vertical and horizontal processes
for diversity induction are used, namely random subspaces at
the time of tree split and leveraging bagging. Finally, it is also
worth to mention the Scale-free Network Regressor (SFNR)
[12], a dynamic ensemble-based method for regression that
employs social networks theory to lay and assign importance

to each of the learners, while using the Adaptive Sliding
Window (ADWIN) [13] algorithm to detect concept drifts and
consequently perform the reset of ensemble members.

IV. HORIZONTAL PARTITIONING

Horizontal partitioning has the goal of inducing diversity
among a set of classifiers. By far, the most widely used
approach to performing horizontal partitioning is bootstrap ag-
gregating, commonly referred to as Bagging [14]. In practice,
bagging induces a set of learners H = {h1, h2, . . . , hc} such
that each hi is trained with a randomly selected sample of the
dataset with replacement. In practice, bagging has shown to
improve the prediction rates of unstable1 learning schemes for
classification [15], [16], regression [17], and clustering [18].

More formally, assuming a static dataset
S = (~x1, y1), . . . , (~xn, yn) with n instances, the probability
that the j-th instance is sampled m times to the hi-th
learner follows the binomial reported in Equation 2, where
Cba = a!

b!(a−b)! .

b

(
m|n, 1

n

)
= Cmn

(
1

n

)m(
1− 1

n

)n−m
(2)

Regarding data streams, the work of [3] introduced an
incremental variant for the Bagging process. In practice,
authors showed that for large datasets, where the number
of instances is asymptotically big, the binomial distribution
could be approximated by the Poisson distribution with a mean
λ = 1. In practice, each instance from the stream has a 63%
chance2 of being used for training in each of the learners
hi ∈ H . More recently, authors in [4] showed that the bagging
process could be leveraged for classification systems with the
increase of the parameter λ. After extensive experimentation,
authors proposed the adoption of λ = 6 as the default for a
process called Leveraging Bagging.

V. VERTICAL PARTITIONING

Similarly to horizontal partitioning, vertical partitioning
is also a process that aims at inducing diversity in a set
of learners. Instead of acting on the “rows” of a dataset
(or stream), vertical partitioning modifies the attributes (or
“columns”) of the instances before they are used for training.
Similarly to bagging, the most famous approach for vertical
partitioning is also random and is called the random subspaces
method [19]. Following the same notation used above, we
assume a static dataset S = (~x1, y1), . . . , (~xn, yn) with n
instances, such that each ~x = (x1, . . . , xd) is a d-dimensional
array of attribute values. In the random subspaces method, S
is used to train a set of learners H = {h1, h2, . . . , hc} such
that each hi observes all n instances, yet, each instance is first
brought to a reduced dimensionality by randomly selecting q

1An unstable learner is assumed to be a machine learning algorithm in
which small changes in the training set result in largely different prediction
models, e.g., decision trees.

2Assuming x to be the number of times that an instance will be sampled
and a parameter λ = 1, the probability becomes P [x > 0] = 1 − P [x =

0] = 1− e−λ

x!
= 1− e−λ ≈ 63%.
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of the d attributes available from an uniform distribution such
that q < d holds3.

The random subspaces method is beneficial when the num-
ber of training instances n is relatively small compared to the
number of dimensions (attributes) available. Furthermore, if
the original dataset has many redundant features, it is possible
to obtain better prediction rates since the overfitting issue is
atoned as the probability of two redundant features to be drawn
to the same learner is small. Focusing on data streams, it is im-
portant to notice that the number of instances is ever-growing,
and thus, the first condition aforementioned is unlikely to -
or will never actually - hold. Despite that, redundant features
and increased data dimensionality are essential issues being
pursued in state-of-the-art research on data streams [20]–[22].

VI. DRIFT DETECTORS

When working with data streams, one must assume that the
data distribution is ephemeral, and thus, learners should be
able to detect and adapt to these changes on the fly. With
the goal of detecting whether and when changes occur, a
multitude of drift detectors was proposed over the years and
these continuously monitor the performance rates of learners
to indicate change-points. A famous drift detector is the Page-
Hinckley test (PHT) [8], which is an accumulative memory-
less approach for monitoring the performance of learners over
time. PHT is an adaptation of the detection of an abrupt change
in the average of a Gaussian signal, and it works by accumulat-
ing the difference between the observed values and their mean
until the current moment. Whenever the mean extrapolates a
user-given threshold, a drift is signaled. In contrast to PHT,
the Adaptive Sliding Window (ADWIN) [13] detector moni-
tors a sequence of real-valued inputs using sliding windows.
Whenever two “large enough” subwindows of the currently
analyzed window exhibit “distinct enough” averages (such that
both parameters are controlled by a confidence level δ), we
conclude that their expectations are different, and thus, the
older portion can be dropped, and a drift is also signaled.
Next, the Exponentially Weighted Moving Average Control
Charts (ECDD) weights the error rates according to their
position inside a sliding window using an exponential function
[23]. In contrast to the proposals mentioned above, ECDD’s
output rate fluctuates across three threshold levels: in-control,
warning, and out-of-control. A drift is flagged whenever the
error rate reaches the out-of-control level. Finally, the authors
in [24] proposed two variants of the Hoeffding Drift Detection
Method (HDDM) detector, namely HDDM-A and HDDM-
W. Both the former and the latter are similar to ECDD in
the sense that they use moving averages to detect drifts, yet,
only the latter uses an exponentially weighted procedure to
provide higher importance to most recent data. In both cases,
the moving averages are compared to flag concept drifts based
on the error rates of a classifier, where the Hoeffding Bound
[25] is used to set an upper bound to the accepted level of
difference between them.

3In the literature, it is common to adopt small values of q such as q =
√
d

or q = log2 d, yet, no actual theoretical justification is given for such choices.

VII. PROPOSAL

In this section, we propose the combination of vertical and
horizontal partitioning, and drift detectors in a data stream
regression ensemble, hereafter referred to as Vertical and
Horizontal Partitioning for Data Stream Regression Ensemble
(VHPRE). More formally, our proposed method consists of:
• The actual ensemble H = {h1, . . . , hc}, which consists

of c members, such that the type of each member is a
user-given parameter ω. In practice, ω could be set be-
tween FIMT-DD, AMRules, or ORTO, yet, due to space
limitations, only FIMT-DD trees results were reported in
this paper. Furthermore, each of the ensemble members
is trained using p% of the features available and using
either the traditional bootstrap aggregating or leveraging
bagging processes.

• A set of background learners β = {β1, . . . , βc} that are
used to speed up the drift recovery process. In practice,
a background learner βi is reset and starts to learn from
incoming instances when a warning is flagged (see next
item for more details).

• A set of warning detectors ψw = {ψw1 , . . . , ψwc } that ob-
serves the target values used for training at the respective
ensemble members. Whenever the i-th warning detector
flags a warning, the background learner βi is reset and
starts to learn.

• A set of drift detectors ψd = {ψd1 , . . . , ψdc} that, similarly
to the warning detectors4 also observe the targets used for
training of the respective ensemble members. Whenever
the i-ith drift detector flags a drift, hi is replaced by the
respective background learner βi that is trained with a
new randomly selected subset of features.

The proposed method is detailed in Algorithm 1, which is
divided in initialization, training, and prediction steps. During
the initialization step, VHPRE instantiates the ensemble H
with c learners, each following the user-given type ω (line 1).
Next, the warning (ψw) and drift (ψd) detectors are initialized
(lines 2-3), followed by the set of background learners β,
which are initialized as null pointers since no warnings were
flagged thus far (line 4). Lastly, each of the ensemble members
hi is associated with a randomly selected subset of p% of the
available features hereafter referred to as di.

The training step of VHPRE is described by the loop in
lines 8-24 of Algorithm 1, which handle the processing of
an instance (~x, y) that arrives at an arbitrary timestamp t.
For the sake of clarity, Algorithm 1 omits the superscript that
denotes the timestamp t. Upon the arrival of an instance (~x, y),
VHPRE iterates over all the members hi, first filtering the
instance into a reduced dimensionality ~x′ that is described
by the features randomly selected previously and stored in di.

4A relevant disclaimer here regards the fact that depending on the drift
detector being used, the set of warning detectors would not be required. For
instance, as mentioned in Section VI, some detectors such as ECDD can flag
both warning and drifts, and thus, a single set of detectors would suffice.
In the source code made available to reproduce the experiments reported in
Section VIII, we followed the strategy reported here where we have two sets
of detectors since they are more generic and allow any detector to be used.
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Next, the number of times which the training instance shall be
used for training k is drawn from a Poisson distribution with
parameter λ (line 10). Consequently, hi is updated accordingly,
and if a warning has been flagged previously, its respective
background learner βi is also updated (lines 12-13). After
updating the learners, VHPRE then updates the warning ψwi
and drift ψdi detectors with the ground-truth target y. After
such updates, VHPRE verifies whether a warning has been
flagged by ψwi , and if this condition holds, a new background
learner βi is instantiated following the type provided by the
parameter ω (lines 16-18), but with a new randomly selected
subset of features dβi (following the same process described
in line 6). Similarly, if a drift is flagged, the learner hi is
then replaced by its respective background learner βi, which
is then set to null, followed by the replacement of di by
dβi (lines 19-23). At this point, it is important to emphasize
that the warning detectors to be more ‘sensitive’, as they are
expected to flag for changes before the actual drift detectors.
The rationale for such approach is to speed up drift recovery as
a new background learner will be trained in parallel whenever
a warning is flagged and will be used iff a drift is flagged.

Finally, at any time, the proposed ensemble may predict
the target for an instance ~x. The prediction rule adopted is
given by Equation 3, which averages the outputs predicted by
the ensemble members hi ∈ H , such that each member has
the instance filtered (~x′) according to its respective subset of
features retained in di (line 25).

ŷ =
1

c

H∑
hi

hi(~x
′) (3)

A. A note on complexity analysis

The initialization step of VHRPE is simple, as it instantiates
the required structures, which results in O(1).

The computationally intensive part of VHRPE is the training
step. For each instance, it loops over all the c ensemble mem-
bers, filtering ~x into a reduced dimensionality representation
~x′ that contains only the q = |di| = (p% × d) randomly
selected features, followed by the target prediction ŷ with a
cost h that depends on the learner used. Next, the model hi
and the background learners are updated k times according
to a Poisson distribution and the user-given parameter λ.
Furthermore, both the warning and drift detectors are updated.
At this point, it is relevant to notice that the amortized
computational cost for all of the aforementioned detectors are
of O(1). Therefore, the overall cost for the training loop is of
O(cqhk).

Finally, the prediction step is also simple, as it iterates over
all the ensemble members and gathers their predictions after
selecting the previously selected subset of features. Therefore,
the cost of this step is of O(cqh), where c is the number
of ensemble members, q is the number of randomly selected
features, and h is the cost of predicting an instance with the
regression model hi.

Algorithm 1 Algorithm for vertical and horizontal partitioning
for data stream regression.
Input: data stream S, ensemble size c, subspace percentage

p, Poisson distribution parameter λ, base learner type ω,
and the drift detector type ψ

Output: predict, at any time, the label ŷ for an input ~x
Initialization step:

1: Initialize the ensemble H = {hi, . . . , hc} with ω learners
2: Initialize Ψd = {ψd1 , . . . , ψdc}
3: Initialize Ψw = {ψw1 , . . . , ψwc }
4: Initialize β = {β1, . . . , βc}, such that βi is NULL
5: for i← 0 to c do
6: Let di be the subset of features randomly selected with

p% of the available features in S
7: end for

Training step (~x, y):
8: for i← 0 to c do
9: Let ~x′ be the arriving instance ~x filtered with the

instances selected in di
10: Draw k from a Poisson distribution with parameter λ
11: Update hi k times with (~x′, y)
12: if βi 6= NULL then
13: Update βi k times with (~x′, y)
14: end if
15: Update ψwi and ψdi with y
16: if ψwi flags a warning then
17: Initialize βi as a new ω learner with a new subset of

features dβi
18: end if
19: if ψdi flags a drift then
20: Replace hi with βi
21: βi ← NULL
22: Replace di with dβi
23: end if
24: end for

Prediction step (~x):
25: return ŷ = 1

c

∑H
hi
hi(~x

′), where ~x′ is the arriving
instance filtered with the features selected in di

VIII. ANALYSIS

In this section, we analyze the proposed method re-
garding parameterization impact and compare it against
existing methods w.r.t. prediction error rates, processing
time, and memory consumption. The code for the proposed
method and to reproduce all of the experiments reported
in this paper can be found at https://github.com/jpbarddal/
moa-reg-horizontal-vertical-partitioning.

A. Experimental protocol

In the following sections, the results obtained by the
proposed method and state-of-the-art data stream regression
learners in a testbed consisted of both synthetic and real-world
datasets are reported. The assessment of the methods take into
account the Prequential root mean squared error (RMSE) given
by Equation 4 using a window w of 10,000 instances [26]. The
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TABLE I
OVERVIEW OF THE EXPERIMENTS

Experiment ID Total #
of features

# of
relevant
features

# of instances # of drifts Type

HYPER-10 10 10 1,000,000 2 Synthetic
HYPER-50 50 10 1,000,000 2 Synthetic

HYPER-100 100 10 1,000,000 2 Synthetic
CALHOUSING 8 Unknown 20,640 Unknown Real

FRIED 10 Unknown 40,768 Unknown Real
HOUSE16H 16 Unknown 22,784 Unknown Real

use of RMSE instead of a conventional mean average error
(MAE) is that the errors are squares before they are averaged,
and thus, it assigns a higher weight to larger errors.

RMSE(t, w) =

√√√√ 1

w

t∑
i=t−w

(yi − ŷi)2 (4)

An overview of the experiments conducted are given in
Table I. Each experiment was performed 30 times after either
(i) changing the random seed of the synthetic experiments
generator, or (ii) randomly shuffling the real-world datasets
so that a combination of Friedman and Nemenyi tests was
performed [27].

Synthetic experiments were tailored using the Hyperplane
generator [28] available in the Massive Online Analysis
(MOA) framework [7]. This generator synthesizes data streams
with d features, and the target is a distance metric ∆ between
each data point and a hyperplane which is randomly generated
with (d − 1) dimensions. The hyperplane experiments are
labeled in the ‘HYPER-d’ format, where d is the number
of features available in the experiment. Finally, all synthetic
experiments contain 1 million instances and possess two
equally spaced concept drifts, i.e., they occur at 333,333 and
666,666 instances.

Regarding real-world datasets, the CALHOUSING dataset
[29] targets the prediction of housing prices according to
the 1990 California census. FRIED is a classical regression
dataset where each instance is represented by 10 features
whose values are independently and uniformly distributed
over [0, 1] [14]. The target in the HOUSE16H dataset is to
estimate the median house price in a given region according
to 16 features representing demographic and house market
data obtained from the US census in 2010 [30]. Even though
none of these datasets exhibit the main characteristics of data
streams, they are used to verify how the proposed method
behaves on different types of scenarios.

Finally, we now compare VHPRE to AMRules, FIMT-
DD, ORTO, ARFREG, and SFNR methods following the
default parameters observed in the original publications. The
parameters for VHRPE are: ensemble size of 10 members, a
subspace percentage p = 0.7, λ = 1, a FIMT-DD base learner,
and ADWIN detector for both signaling warnings

(
δ = 10−4

)
and drifts

(
δ = 10−5

)
. For FIMT-DD, the main parameters

are the grace period for which features are evaluated for tree
branching equal to 200, and a PHT threshold equal to 50. As

for ORTO, the primary parameter that determined the maxi-
mum number of option trees was set to 10. For ARFREG, the
ensemble contains 10 trees, the number of features evaluated at
the moment of tree branching is q =

√
d+1, λ = 6 to perform

the leveraging bagging process, and ADWIN detector for both
signaling warnings

(
δ = 10−4

)
and drifts

(
δ = 10−5

)
.

B. VHRPE Parameter analysis

Before comparing our proposed method against existing
works of the area, it is important to determine a parameter
configuration that is, in average, suited. Therefore, our goal
in this section is not to perform a tuning process to find a
parameter configuration that yields the best RMSE rates for
each experiment, but a configuration that achieves reasonable
RMSE rates across all experiments. To achieve this result,
Figure 1 reports the RMSE rates obtained by VHPRE across
different experiments with different values of p ∈ [0, 1]
iterating with a step of 0.1 and λ ∈ {1, 6}. When analyzing the
results for all experiments, we can verify that with the increase
of the subspaces p, the RMSE rates decrease regardless of the
λ parameter. In the HYPER-50 and HYPER-100 experiments
the optimal value of p is found with p = 0.7, whereas for
CALHOUSING, the optimal value is p = 0.8. Finally, the
results also show that for HYPER-10, FRIED and HOUSE16H
experiments, the optimal results are obtained when all features
are used, i.e., p = 1. These results show that for scenarios
with low dimensionality, vertical partitioning does not yield
improvements in RMSE rates, whereas experiments with mild
and high dimensionalities, e.g., HYPER-50 and HYPER-100,
random subspaces is beneficial.

Regarding the impact of the λ parameter, the results for
HYPER-10, HYPER-50, and HYPER-100 share the effect
where λ = 6 marginally improves the RMSE rates obtained
with λ = 1, whereas the rates for CALHOUSING, FRIED,
and HOUSE16H are inconclusive since the leveraging bagging
process only improved the learning rates for CALHOUSING.
Given the aforementioned results, combination of Friedman
and Nemenyi tests was conducted, which showed that p = 0.7
and λ = 1 was, in average, the best performing parameteri-
zation, followed by (p = 0.8, λ = 1) and (p = 1.0, λ = 1),
neither with statistical differences being observed with a 95%
confidence level.

Finally, VHPRE with (p = 0.7, λ = 1) was tested with the
drift detectors reported in Section VI, i.e., ADWIN, HDDM-A,
HDDM-W, PHT, and ECDD. For the sake of brevity, only the
results for the two best-performing methods were reported, i.e.
ADWIN and HDDM-A, as no clear and statistical difference
was observed between them. To facilitate the visualization of
the RMSE rates obtained by experiments with each of these
detectors, Figure 2 depicts the results obtained as a set of
box-plots.

C. Comparison against existing methods

In this section, we compare the RMSE rates obtained by
the default configuration of VHPRE against existing data
stream regression methods. In Table II the average RMSE

Vertical and Horizontal Partitioning in Data Stream Regression Ensembles

paper N-19619.pdf- 5 -

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:49:17 UTC from IEEE Xplore.  Restrictions apply. 



0.5 1

0.1

0.2

p

A
vg

.R
M

SE
HYPER-10

0.5 1

0.2

0.4

p

HYPER-50

0.5 1
0

0.2

0.4

p

HYPER-100

0.5 1
7.5

8

8.5

·104

p

CALHOUSING

0.5 1
3

4

5

6

p

FRIED

0.5 1

4.6

4.8

5

5.2
·104

p

HOUSE16H

λ = 1 λ = 6

Fig. 1. Impact of p ∈ [0.1, 1.0] and λ ∈ {1, 6} parameters in VHPRE.
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Fig. 2. A comparison of the RMSE rates obtained with ADWIN and HDDM-A detectors.

TABLE II
AVERAGE RMSE COMPARISON

Experiment ID AMRules FIMT-DD ORTO ARFREG SFNR VHPRE
HYPER-10 0.04 0.23 0.83 0.04 0.21 0.07
HYPER-50 0.14 0.23 0.80 0.09 0.21 0.07

HYPER-100 0.05 0.23 1.29 0.09 0.21 0.03
CALHOUSING 61375.32 81280.30 144055.55 1460591.44 75650.48 85199.09

FRIED 2.48 2.95 7.43 2.02 2.87 4.11
HOUSE16H 46040.66 43236.13 108291.27 913277389868.81 43080.53 45751.78

rates obtained by all learners across different experiments are
reported, and results in bold face are the best average RMSE
rates obtained for each experiment. At a first glance, we note
that there is no clear winning algorithm, as AMRules is the
best performing algorithm in 2 of the experiments, ARFREG
in other 2, VHPRE in another 2, and SFNR in 1. Yet, these
results corroborate that the vertical partitioning method works
reasonably well in mild and high-dimensional streams, which
in our assessment, includes the HYPER-50 and HYPER-100
experiments.

To better visualize this, the results for HYPER-10, HYPER-
50, and HYPER-100 are reported in Figures 3, 4, and 5,
respectively. For the sake of clarity, only the results for
AMRules, ARFREG, and VHPRE were reported. In Figures 3
and 4, we observe that the RMSE rates obtained by all the 3
learners are reasonable stable, whereas the rates for ARFREG
are much more volatile in the HYPER-100 experiment shown
in Figure 5. Also in Figure 5, the improvements in RMSE rates
obtained by the proposed method become competitive, which
is a direct result of the vertical partitioning process applied to
high-dimensional data streams.
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Fig. 3. RMSE rates along the HYPER-10 experiment.
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Fig. 4. RMSE rates along the HYPER-50 experiment.
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Fig. 5. RMSE rates along the HYPER-100 experiment.

Finally, a comparison of all methods on all experiments
is conducted using the results reported in Table II. Using a
combination of Friedman and Nemenyi tests, we are able to
find that AMRules, SFNR, VHPRE, ARFREG, and FIMTDD
outperform ORTO with a 95% confidence level, yet, no
significant differences were observed amongst the best-ranking
methods.

IX. CONCLUSION

This paper proposed and analyzed the impact of both
vertical and horizontal partitioning in ensembles tailored for
data stream regression. The analysis included scenarios with
different dimensionalities and both with and without concept
drifts, thus showing the applicability of the proposed method
compared to state-of-the-art algorithms. Also, the analysis
also showed that (i) the leveraging bagging process barely
impacts the error rates of the proposed method, and (ii) vertical
partitioning via random subspaces becomes of importance in
high dimensional scenarios, where VHPRE was able to surpass
the state-of-the-art ARFREG by a reasonable margin. Finally,
all of the experiments conducted and the source code of the
proposed method are made available on GitHub, thus allowing
quick reproduction by fellow peers. As future works, it is
listed:

1) Label availability and delayed labeling settings: As
mentioned in Section II, the traditional approach for
validating data stream learners is the test-then-train
scheme, where one works under the assumption that yt

becomes available before ~xt+1 arrives. This approach is
optimistic w.r.t. label availability and delay. Therefore,
in future works, it becomes of importance to assess data
stream regression techniques where the label for certain
instances are never available, or become available with
a delay.

2) Regression trees regularization: Trees built incremen-
tally from data streams tend to continuously grow con-
cerning nodes as new data becomes available, i.e., they
eventually split on all features available, and multiple
times on the same feature; thus leading to unnecessary
complexity. With this behavior, Hoeffding Trees lose the
ability to be human-understandable and computationally
efficient. Therefore, it becomes of importance to apply

regularization schemes to FIMT-DD trees such as re-
cently proposed for classification Hoeffding Trees [31].

3) The development of techniques to handle data stream
regression with imbalance: as in classification sce-
narios, the imbalance may also jeopardize the learning
process in data stream regression. Therefore, the creation
and assessment of techniques for scenarios where the
variance in the target is too great become of importance.
To achieve this, both techniques such as (i) oversam-
pling, (ii) undersampling, and (iii) ensembles tailored for
imbalance handling should be proposed and assessed.

4) Data stream regression, feature importance, and
feature drifts: another important trend in data stream
mining nowadays regards feature analysis. Even though
feature ranking and selection is a problem widely tackled
in batch machine learning, only in the last years it has
gained attention in the data stream community due to
feature drifts, which occur whenever a subset of features
becomes - or ceases to be - relevant to the learning
task [21], [22]. For instance, the method proposed in
this paper could serve as the basis for feature analysis
in high-dimensional scenarios since random subspaces
significantly breaks down the complexity of the learning
process and FIMT-DD trees could yield importance
scores, similarly to Hoeffding Trees [32].

REFERENCES

[1] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[2] J. Gama and P. Kosina, “Learning decision rules from data
streams,” in Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Two, ser.
IJCAI’11. AAAI Press, 2011, pp. 1255–1260. [Online]. Available:
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-213

[3] N. C. Oza, “Online bagging and boosting,” in 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, Oct 2005, pp.
2340–2345 Vol. 3.

[4] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Machine Learning and Knowledge Discovery
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