
Interfacing Users and CSCW Applications using a Web-
Based Embodied Conversational Assistant

Emerson Cabrera Paraiso, Yuri Campbell

Pontifícia Universidade Católica do Paraná, Post-Graduate Program on Informatics
CEP: 80.215-901, Curitiba, Paraná, Brazil

{emerson.paraiso, yuri.campbell}@pucpr.br

Abstract: WebAnima is a web-based embodied conversational personal
assistant agent. It is an interface agent specially designed to assist team
members of a CSCW application during their daily work based on computers.
In WebAnima, the intelligent behavior is guaranteed thanks to a conversational
interface and ontologies that support semantic interpretation. We believe that
embodied conversational assistants will improve the quality of assistance and
increase collaboration between project members. We describe the design of the
agent, highlighting the role of ontologies for semantic interpretation and the
dynamic behavior of the embodied animated agent.

1 Introduction

The use of multi-agent systems (MAS) for improving cooperative work based on
computers (CSCW) has become very popular these past few years ([1], [2] and [3]).
In general, for this kind of application, the MAS architecture contains two types of
agents: the ones responsible for executing a specific task and the ones aimed to
interface users with the system. The latest are commonly named interface agents [4].
In this sense, an interface agent is a semi-intelligent system which assists users with
daily computer-based tasks [5]. We agree that, for the effective use and success of this
approach, the interface agent must have a user interface specially designed for CSCW
applications. The interface agent and its interface must take into account that users are
doing many tasks and using several different applications at the same time (browsers,
word processors, CADs, etc.). The user interface should captivate users to keep using
their agent. To achieve this goal, we have been developing a new personal interface
agent called WebAnima. WebAnima involves the use of conversational animated
personal assistants (CAPA) coupled with the MAS. A CAPA is the result of mixing
personal assistants and embodied conversational agents. Embodied conversational
agents are animated anthropomorphic interface agents that are able to engage a user in
real-time, multimodal dialogue, using speech, gesture, gaze, posture, intonation, and
other verbal and nonverbal behaviors to emulate the experience of human face-to-face
interaction [6]. They are designed to converse like a human as much as their
intelligence allows [7]. In WebAnima, the intelligent behavior is guaranteed thanks to
a conversational interface [8] and ontologies that support semantic interpretation.

2 Emerson Cabrera Paraiso, Yuri Campbell

Each team member (community of users connected to the CSCW application) has a
WebAnima agent that behaves according to its user profile built on the fly.
WebAnima can potentially improve the exchange of information among the
participants, provide support, improve workflows and procedure controls, and provide
convenient user interfaces in MAS-based CSCW applications [9].

A WebAnima agent can be used in different domains, since its knowledge about
the domain and tasks to be performed are represented as ontologies. As the result of
this approach we expect:
• to improve the quality of assistance;
• to improve collaboration between members;
• to improve users interest on using the system; and
• to reduce the user’s cognitive load.

 In this paper, we present the WebAnima architecture and how it can centralize and
control user interaction in an MAS application. In order to contextualize, examples
are based on an MAS that supports a research and development team on its daily
activities. The paper begins by describing the WebAnima architecture (section 2).
After that, we present the conversational interface controller in section 3. In the
section 4, we present the embodied animated interface. Finally, we offer a conclusion
and indicate some perspectives for forthcoming work.

2 The WebAnima Agent Architecture

Before describing what a WebAnima agent is, it is important to define a personal
assistant (PA). A PA is an interface agent in charge of interfacing humans to the
system. The particular skills of a PA are devoted to understanding its master and
presenting the information intelligently and in a timely manner. We have applied PAs
in CSCW applications, where they play a major role [10]. Firstly, they are in charge
of all exchanges of information among team members. Secondly, a PA is able to
organize the documentation of its master with the help of a service agent. Finally, PAs
must capture and represent the team members’ operations, helping them in the process
of preserving and creating knowledge. Thus, our main goal is to provide a system,
that supports collaborative work and helps to capture and to organize experiences
without overloading the team members with extra-work.

WebAnima is a web-based embodied conversational personal assistant agent, as
shown in Fig 1. WebAnima is, in fact, an evolution of SpeechPa: an intelligent speech
interface for PAs in research and development projects [10].

Interfacing Users and CSCW Applications using a Web-Based Embodied Conversational
Assistant 3

Fig 1. Some WebAnima snapshots.

As shown in Fig 2, SpeechPA handles dialogs in natural language and was used to
interface team members in a R&D project prototype. Even if SpeechPA is a mixed-
initiative conversational interface, its “static” behavior limits its acceptance. Due to
some assumptions defined at the beginning of the project, SpeechPA follows the
strategy of treating only directive speech acts [11], reducing the number of turn-
takings since some speech acts, like acknowledgement acts (“Thank you” or “Have a
nice trip”) are not used by the PA. To overcome these limitations, in the WebAnima
agent, the conversational module accepts and uses a wider set of speech acts, giving
more flexibility to the agent.

Fig 2. The original SpeechPA interface.

In order to animate the interface and to test the acceptability of animated characters
by users, we added to SpeechPA an avatar (human-like figure) (as shown in Fig 1).

The WebAnima agent structure is shown in Fig 3. The design and implementation
of such agent is a hard task and involves many different components: dialogue
controllers, natural language parsers, speech recognizers and synthesizers, knowledge
manipulators, to list a few. For the design of WebAnima we made some assumptions
related to the agent and its operation, described in detail in [9].

A WebAnima agent is a rather complex system. Among the many types of agent
models and systems that have been proposed, we selected cognitive agents. The main
advantage of cognitive agents is the possibility of designing intelligent behaviors by
specifying a set of skills. In addition, in our case, such agents run independently of
any particular task to solve.

4 Emerson Cabrera Paraiso, Yuri Campbell

CONTROL

Skills
(competences)

C
om

m
unication

Tasks Ontology

World
(others agents)

Self
(Local Memory)

Agent Kernel
A

nim
ated Interface

Lexicon and
Synonyms

User profile

Parsing and
Syntactic
analysis

Conversational Controller

Actions Library Dialogue
Model

Dialog Context

CONTROL

Skills
(competences)

C
om

m
unication

C
om

m
unication

Tasks Ontology

World
(others agents)

Self
(Local Memory)

Agent Kernel
A

nim
ated Interface

A
nim

ated Interface

Lexicon and
Synonyms

User profile

Parsing and
Syntactic
analysis

Conversational Controller

Actions Library Dialogue
Model

Dialog Context

Fig 3. The WebAnima agent structure.

Our agent is built around three main blocks: the user interface (a web-based
animated interface implemented using the toolkit WebLEA [12] – see section 4 for
details), the ontology-based conversational interface controller, mainly responsible for
controlling the dialogue (the same used in SpeechPA), and a fixed body, called the
Agent Kernel. The Agent Kernel block contains all the basic structure that allows an
agent to exist. Further information on the Agent Kernel can be founded in [10]. The
next two sections describe in detail the other two main WebAnima blocks: the
conversational interface controller and the animated user interface.

3 The Conversational Interface Controller

To produce a more attractive interface agent, from the user interface point of view,
WebAnima incorporates a conversational interface. Conversational interfaces as
defined by Kölzer [8], let users state what they want in their own terms, just as they
would do, speaking to another person.

Whenever the user says something, this is known as an utterance. It can be a single
word, or contain several words (a phrase or a sentence). For example, “email,” “email
account,” or “I’d like to open my email account” are utterances. The utterances are
captured using a commercial automatic speech recognition engine that returns the
recognized result for each word. The Utterance Capturing module concatenates all the
words forming an utterance.

Like in most dialogue systems, we process each utterance sequentially. The
process of interpreting an utterance is done in two steps: (i) parsing and syntactic
analysis; and (ii) ontology application. The results are sent to the dialogue manager
continuously, or back to the user when they do not make sense.

The parsing algorithm replaces each utterance stem with its syntactic category
(verb, noun, adverb, etc) with the help of a lexicon file and a set of grammar rules. In
our application, a typical utterance could be: “I need a list of all project participants.”
According to our taxonomy this is an order utterance and can be processed by the
grammar rules. If a sentence is not well formed, according to the grammatical
structure, or if it is out of the domain, then it is classified as a nonsensical utterance.
In this case the user is invited to reformulate her sentence.

The mixed-initiative and task-oriented dialogue mechanism is coordinated by the
dialogue manager. It is capable of choosing a dialogue model appropriate to the

Interfacing Users and CSCW Applications using a Web-Based Embodied Conversational
Assistant 5

beginning of a session. Each dialogue session is conducted as a task with sub-tasks.
When the user requests an action, the dialogue manager tries to execute it, creating a
task that is dispatched by the Action Looping module. However, if the initial
utterance lacks crucial information—e.g., an action parameter—it starts sub-tasks to
complete the action list, asking additional information from the user. The Action
Looping handles GUI events and also receives calls from the dialogue manager. It is
also responsible for merging all modalities (e.g., button click and speech).

In the context of an open conversation, the problem of understanding is complex,
demanding a well structured knowledge base. Domain knowledge is used here to
further process the user’s statements and for reasoning. To this effect, we are using a
set of task and domain ontologies. The main purpose of an ontology is to enable
knowledge sharing and reuse. The key components that make up an ontology are a
vocabulary of basic terms and a precise specification of what those terms mean [13].

In this ontology-based conversational interface, we are using a set of task and
domain ontologies, separating domain and task models for reasoning. As suggested by
Allen [14], this is interesting for domains where task reasoning is crucial. Besides,
using domain knowledge separately reduces the complexity of the linguistic modules,
and allows a better understanding of statements. In one of their works, Milward and
Beveride [15] describe how scripted dialogue systems are moving to a new generation
of practical systems based on domain knowledge and task descriptions.

Ontologies play two main roles in our PA: (i) they help an agent to interpret the
context of messages sent by others agents or by the user (utterances); and (ii) they
keep a computational representation of knowledge useful at inference time. The
design of such ontologies must cover the user’s world, in terms of entities and their
relationships. In addition, the ontologies must also facilitate the process of semantic
interpretation, supplying the parser with linguistics elements, like noun synonyms, or
hyponyms/hyperonyms.

Given this overview about the ontologies and their role in the process, let’s focus
our attention on the semantic interpretation mechanism. The approach to the semantic
interpretation presented here is based on the notion that the meaning of utterances can
be inferred by looking for concepts and their attributes. Precisely, the module
responsible for applying the ontology to the utterance is interested in finding the list
of verbs that indicate the task to be executed and the domain concepts. The
corresponding keywords are concepts of the ontology directly related to a list of
actions.

In this paper, the ontologies are simple and short enough to understand the
semantic interpretation mechanism. The concepts and their properties are organized to
map the world but also to help processing natural language (by adding a list of
applicable actions to each concept of the ontology). To illustrate how the mechanism
works, consider the utterance:

USER: Could you list all articles about Agents?

A very simple piece of ontology is shown in Fig 4a (we used Protégé [16] for a

simplified representation), describing concepts that model a project. A project,
according to the ontology, may have different types of documents, an address book,

6 Emerson Cabrera Paraiso, Yuri Campbell

an agenda, and a list of members. A set of actions are related to each concept. Each
concept may have some attributes (Fig 4b). Note that a set of actions (e.g., read, list,
erase, shown in Fig 4c) may be applied to each concept, as shown Fig 4d.

c) Actions instances d) Actions list for Articles

a) Excerpt of the ontology

b) A concept and its attributes

c) Actions instances d) Actions list for Articles

a) Excerpt of the ontology

b) A concept and its attributes

Fig 4. An excerpt of the ontology Project.

To interpret the given input, the parser checks its context. It verifies that it is a
question related to the domain. To do so, it uses the domain ontology and the lexicon.
Since it is a question and since it is related to the application domain, the Grammar
Verification module returns a matrix containing the list of tokens and their syntactic
classification. By looking up the tokens in the ontology, it finds that the token list is
an action (Fig 4d). Note that it uses a list of synonyms (e.g. “list” and “enumerate” are
synonyms in this context). It finds also that articles is an object and Agents is one of
its properties (to define each property of a concept, one should give its type, a list of
synonyms, its cardinality and a domain restriction). Next, the dialogue manager takes
control of the dialogue.

Tasks in our system are represented as shown in Fig 5. A task has a set of
parameters that are filled during a dialogue session. The dialogue manager will push a
task onto the stack of tasks when an utterance related to the task is given. Many tasks
may be handled simultaneously (even tasks of the same type), for instance:

USER: I need to send an email to Mike Palmer.

Interfacing Users and CSCW Applications using a Web-Based Embodied Conversational
Assistant 7

a) Task parameters b) Parameters’ fieldsa) Task parameters b) Parameters’ fields

Fig 5. Task model example.

After the parsing and semantic analysis, the dialogue manager is able to start a new
task, since it is related to the domain (according to our first ontology presented in Fig
4). The task To Send an Electronic Message has some parameters to be filled before
the agent is able to execute it (each task has the structure shown in Fig 5a). One of the
parameters may be the subject of the message. Since the given utterance does not
contain this information, the dialogue manager will request it from the user, asking
her the question defined in the appropriate question field (as listed Fig 5b). The
dialogue manager changes the task status to pending and waits for a response from the
user. When all fields are filled, the dialogue manager sends the task for execution.

Our platform runs in a Microsoft Windows™ environment, using the default
automatic speech recognition and text to speech engines. Ontologies are XML files.

4. The Embodied Animated Interface

The third main block that composes WebAnima is its embodied animated interface. In
WebAnima we used a toolkit called WebLEA. WebLEA is a technology of 2D
cartoon-like simple graphic characters that can be displayed and animated on web
pages. WebLEA is a toolkit dedicated to the display and animation of embodied
characters on web pages using the JavaScript technology in full client mode. The 2D
cartoon-like characters (Fig 6) which are used for embodying the assistant enable to
display various postures, facial expressions and gestures [17].

In WebAnima, the character behavior is driven by two set of parameters: a static
set and a dynamic set. The static set of parameters determines general behaviors, such
as: the use of politeness and/or humor when formulating responses, general
movements (allowing or not the character to walk on the screen), use of gestures, size,
speech language (English or Portuguese), etc. These parameters are set by each user.
They can be changed at any time.

8 Emerson Cabrera Paraiso, Yuri Campbell

Fig 6. The Three different WebLEA characters.

The other set of parameters are related to specific behaviors and may impact in task
execution or limit autonomy. These parameters are defined dynamically. As much as
the agent is used, more accurate this set is. They are initialized when a new user is
created (e.g. a new engineer starts working in the project) with default values. As
mentioned at the beginning of this article, each team component has his/her own PA.
Three main behavior parameters compound this set: degree of autonomy, presentation
policy and help policy.

As a cognitive agent, the PA may assume some responsibilities regarding the
execution of tasks. The degree of autonomy depends on the pattern defined by the
user. Every time a task is selected to be executed, the PA will verify if it should
demand (to its user) authorization to fire it. When writing a task (in the task ontology)
the designer of the application must define if the PA must or not request authorization
before execute it (parameter “authorization” as shown in Figure 6a). For each task
that requires authorization, at the first time the PA will ask the user if it may assume
the responsibility to execute the task without authorization the next time. Tasks like:
to erase emails classified as spam or to charge a new spreadsheet just uploaded in the
spreadsheet database are good examples. The PA will use the same strategy to
determine when interrupt the user to present a message or to request an information
needed to accomplish a task.

A PA that constantly interrupts its user with boring questions or messages may
drive the user to ignore it. To avoid that, a presentation policy must be defined. The
presentation policy defines how information is presented and how the user is warned.
Since the PA is the only interface the user has with the system, the interaction may be
stimulated by the PA or by a request made by a service agent. For instance: a service
agent may inform that a printing is finished or that an email just came in. The PA will
classify each message in two categories: the ones that may be stored and displayed
later and the ones that should be displayed immediately. Every message or query
generated by the PA itself will be displayed immediately. Queries from service agents
will be displayed as soon as possible (when the user is not busy giving information for
executing a specific task). Warning messages or the confirmation of a task execution
will be postponed and printed in a log window.

Interfacing Users and CSCW Applications using a Web-Based Embodied Conversational
Assistant 9

The help policy is related to how often the PA will suggest help when the user uses
the system. For new users, the agent will propose to guide them in order to
accomplish a specific task (for instance: send and compose an email or search a
document in the document’s database). To do that, the PA will consult a base of
procedures, fed by the community of PAs. Each time a user accomplishes a task, her
PA will register the steps needed to accomplish it (if not registered) in this centralized
database. For a new user, the PA will suggest to guide her until she accomplishes the
specific task for the first time. After that, the PA will assume that the user may herself
accomplish the task.

5. Conclusions and Future Work

In this paper we presented a web-based embodied conversational assistant to interface
users with CSCW applications. We described the design of the agent, highlighting the
role of ontologies for semantic interpretation and the dynamic behavior of the
embodied animated agent.

Since the application is a PA, an essential feature of the user interface was
respected: predictability. It was an assumption stated in the beginning: to provide
correct responses and act according to the user’s command. Impossible requests, such
as those out of context, are easily handled since the system uses a competence list
described as an ontology.

WebAnima illustrates the enormous potential for task-oriented collaboration
between team members and conversational agents in CSCW applications. As
advocated by Rickel and Johnson [18], although verbal exchanges may be sufficient
for some tasks, we expect that, with WebAnima, many domains will benefit from an
agent that can additionally use gestures, facial expressions and locomotion.

The actual version of WebAnima does not support multiples languages. This is a
special challenge in natural language based interfaces (special grammars, etc.). By
now, we work with English and Portuguese only.

The next step is to improve the agent behaviour by adding a learning module to it
in order to keep a more sophisticated user profile. This will allow clustering users and
better adapting the PA behavior. This is the first step to treat special multi-cultural
situations. We are also studying others alternatives to implement the embodied agents,
such as Java 3D. We hope to implement a faster solution since WebLEA is too slow
in some platforms.

Acknowledgments
Yuri Campbell would like to thanks Fundação Araucária–Brazil that partially
supported him in this research.

10 Emerson Cabrera Paraiso, Yuri Campbell

References

1. Spinosa, L. M., Quandt, C. O., Ramos, M. P.: Toward a Knowledge-Based Framework to
Foster Innovation in Networked Organizations. In: 7th CSCWD 2002, Rio de Janeiro,
Brazil, (2002).

2. Tacla, C. A., Barthès, J.-P. A.: From Desktop Operations to Lessons Learned. In: The 7th
CSCWD, Rio de Janeiro, (2002).

3. Wu, S., Ghenniwa, H., Shen, W.: User Model of a Personal Assistant in Collaborative
Design Environments. In: Agents in Design, MIT, pp. 39-54, Cambridge, USA. (2002).

4. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and
Development. In: Autonomous Agents and Multi-Agent Systems 1, pp. 7-18. (1998).

5. Maes, P., Kozierok, R.: Learning Interface Agents. In: The Eleventh National Conference
on Artificial Intelligence, pp. 459-465. Washington D.C.: AAAI Press.

6. Bickmore, T., Cassell, J.: Social Dialogue with Embodied Conversational Agents. In: J. van
Kuppevelt, L. Dybkjaer, and N. Bernsen (eds.), Natural, Intelligent and Effective
Interaction with Multimodal Dialogue Systems. New York: Kluwer Academic. (2004).

7. Sing, G., Wong, K., Fung, C., Depickere, A.: Towards a More Natural and Intelligent
Interface with Embodied Conversation Agent. In: International Conference on Game
Research and Development, pp. 177-183. (2006).

8. Kölzer, A.: Universal Dialogue Specification for Conversational Systems. In: IJCAI –
Knowledge and Reasoning in Practical Dialogue Systems (1999).

9. Paraiso, E. C., Barthes, J.-P. A.: An Intelligent Speech Interface for Personal Systems in
R&D Projects. In: Expert Systems with Applications, v. 31, pp. 673-683. (2006).

10. Paraiso, E. C., Barthes, J.-P. A.: An Intelligent Speech Interface for Personal Assistants in
R&D Projects. In: The 9th IEEE International Conference on CSCW in Design, pp. 804-
809, Coventry – UK. (2005).

11. Searle, J. R.: A Taxonomy of Illocutionary Acts. In: Language, Mind and Knowledge, Vol.
7, University of Minnesota Press, pp. 344-369. (1975).

12. Sansonnet, J-P., Martin, J-C., Leguern, K.: A Software Engineering Approach Combining
Rational and Conversational Agents for the Design of Assistance Applications. In: T.
Panayiotopoulos et al. (Eds.): pp. 111 – 119, IVA 2005, LNAI 3661. (2005).

13. Guarino, N.: Formal Ontology in Information Systems. In: FOIS’98, Italy, IOS Press, pp. 3-
15. (1998).

14. Allen, J., Ferguson, G., Stent, A.: An Architecture for More Realistic Conversational
Systems. In: Intelligent User Interfaces 2001, Santa Fe, NM. (2001).

15. Milward, D., Beveride, M.: Ontology-Based Dialogue Systems. In: International Joint
Conference on Artificial Intelligence IJCAI – 03, Acapulco, Mexico. (2003).

16. Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, Eiksson, M., Noy,
N., Tu, W.: The Evolution of Protégé: An Environment for Knowledge-Based Systems
Development. (2002).

17. Abrilian, S., Buisine, S., Rendu, C., Martin, J.-C.: Specifying Cooperation between
Modalities in Lifelike Animated Agents. In International Workshop on Lifelike Animated
Agents: Tools, Functions, and Applications, pp. 3-8, Tokyo, Japan. (2002).

18. Rickel, J., Johnson, W.L.: Task-Oriented Collaboration with Embodied Agents in Virtual
Worlds, J. Cassell, J. Sullivan, and S. Prevost (Eds.), Embodied Conversational Agents.
Boston: MIT Press, pp. 95-122, (2000).

